【題目】已知數(shù)列中,,且.
(Ⅰ)求數(shù)列的通項公式;
(Ⅱ)設(shè)數(shù)列的前項和為,求滿足的所有正整數(shù)的值.
【答案】(Ⅰ);(Ⅱ)的值為1與2.
【解析】
(Ⅰ)由條件可得,,再用累加法求解即可;
(Ⅱ)利用分類討論法求和或錯位相減法求解.
(Ⅱ)(解法一)由題意得,數(shù)列的前項和為,令,其前項和為,由此討論可求出答案.
(解法二)令,利用錯位相減法求得其前項和,從而求出,記,由此討論即可求出答案.
解:(Ⅰ),
,即,
由累加法,當(dāng)時,
,
代入得,
,
(),
也滿足上式,
∴;
(Ⅱ)解法一:,
數(shù)列的前項和為,
令,
其前項和為,
則有,
∴,
當(dāng)時,,則有,
綜上,不等式成立的的值為1與2.
解法二:令,設(shè)其前項和為,
∴,
∴,
兩式相減得,
,
,
則有,
記,
當(dāng)時,;
當(dāng)時,;
當(dāng)且為奇數(shù)時,,,則;
當(dāng)且為偶數(shù)時,,,則;
綜上所述,不等式成立的的值為1與2.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的短軸長為2,且兩個焦點和短軸的兩個端點恰為一個正方形的四個頂點,過E的左焦點F且不與坐標(biāo)軸垂直的直線l與E交于A,B兩點,線段AB的垂直平分線m與x軸,y軸分別交于M,N兩點,交線段AB于點C.
(1)求E的方程;
(2)設(shè)O為坐標(biāo)原點,記的面積為,的面積為,且,當(dāng)時,求l的斜率的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓,P是橢圓的上頂點,過點P作斜率為的直線l交橢圓于另一點A,設(shè)點A關(guān)于原點的對稱點為B
(1)求面積的最大值;
(2)設(shè)線段PB的中垂線與y軸交于點N,若點N在橢圓內(nèi)部,求斜率k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,棱長為2的正方體中,點分別為棱的中點,以為圓心,1為半徑,分別在面和面內(nèi)作弧和,并將兩弧各五等分,分點依次為、、、、、以及、、、、、.一只螞蟻欲從點出發(fā),沿正方體的表面爬行至,則其爬行的最短距離為________.參考數(shù)據(jù):;;)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某數(shù)學(xué)教師在甲、乙兩個平行班采用“傳統(tǒng)教學(xué)”和“高效課堂”兩種不同的教學(xué)模式進行教學(xué)實驗.為了解教改實效,期中考試后,分別從兩個班中各隨機抽取名學(xué)生的數(shù)學(xué)成績進行統(tǒng)計,得到如下的莖葉圖:
(1)求甲、乙兩班抽取的分數(shù)的中位數(shù),并估計甲、乙兩班數(shù)學(xué)的平均水平和分散程度(不要求計算出具體值,給出結(jié)論即可);
(2)若規(guī)定分數(shù)在的為良好,現(xiàn)已從甲、乙兩班成績?yōu)榱己玫耐瑢W(xué)中,用分層抽樣法抽出位同學(xué)參加座談會,要再從這位同學(xué)中任意選出人發(fā)言,求這人來自不同班的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖是九江市2019年4月至2020年3月每月最低氣溫與最高氣溫(℃)的折線統(tǒng)計圖:已知每月最低氣溫與最高氣溫的線性相關(guān)系數(shù)r=0.83,則下列結(jié)論錯誤的是( )
A.每月最低氣溫與最高氣溫有較強的線性相關(guān)性,且二者為線性正相關(guān)
B.月溫差(月最高氣溫﹣月最低氣溫)的最大值出現(xiàn)在10月
C.9﹣12月的月溫差相對于5﹣8月,波動性更大
D.每月最高氣溫與最低氣溫的平均值在前6個月逐月增加
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(題文)已知正方體的棱長為1,每條棱所在直線與平面α所成的角都相等,則α截此正方體所得截面面積的最大值為
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】高二某班共有45人,學(xué)號依次為1、2、3、…、45,現(xiàn)按學(xué)號用系統(tǒng)抽樣的辦法抽取一個容量為5的樣本,已知學(xué)號為6、24、33的同學(xué)在樣本中,那么樣本中還有兩個同學(xué)的學(xué)號應(yīng)為( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)),以原點為極點,軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(Ⅰ)寫出直線的普通方程和曲線的直角坐標(biāo)方程;
(Ⅱ)已知點,直線與曲線相交于點,求的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com