已知cosα=
1
3
,且-
π
2
<α<0,求
sin(2π+α)
tan(-α-π)cos(-α)•tanα
的值.
考點(diǎn):運(yùn)用誘導(dǎo)公式化簡求值,同角三角函數(shù)基本關(guān)系的運(yùn)用
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:直接利用誘導(dǎo)公式化簡表達(dá)式,然后求解即可.
解答: 解:
sin(2π+α)
tan(-α-π)cos(-α)•tanα
=
sinα
-tanαcosα•tanα
=-
cosα
sinα

∵cosα=
1
3
,且-
π
2
<α<0,∴sinα=-
1-cos2α
=-
2
2
3

-
cosα
sinα
=
1
3
-
2
2
3
=-
2
4

sin(2π+α)
tan(-α-π)cos(-α)•tanα
=-
2
4
點(diǎn)評(píng):本題考查誘導(dǎo)公式的應(yīng)用,同角三角函數(shù)的基本關(guān)系式的應(yīng)用,考查計(jì)算能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

橢圓
x2
a2
+
y2
b2
=1(a>b>0)過點(diǎn)A(2,1),離心率e=
3
2

(1)求橢圓方程;
(2)過直線y=2上的點(diǎn)P作橢圓的兩條切線,切點(diǎn)分別為B,C
①求證:直線BC過定點(diǎn);
②求△OBC面積的最大值;
參考公式:過橢圓
x2
a2
+
y2
b2
=1上點(diǎn)(x0,y0)的切線方程為
x0x
a2
+
y0y
b2
=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,已知圓O:x2+y2=1與x軸交于A、B兩點(diǎn),與y軸的正半軸交于點(diǎn)C,M是圓O上任意點(diǎn)(除去圓O與兩坐標(biāo)軸的交點(diǎn)).直線AM與直線BC交于點(diǎn)P,直線CM與x軸交于點(diǎn)N,設(shè)直線PM、PN的斜率分別為m、n.
(Ⅰ)求直線BC的方程;
(Ⅱ)求點(diǎn)P、M的坐標(biāo)(用m表示);
(Ⅲ)是否存在一個(gè)實(shí)數(shù)λ,使得m+λn為定值,若存在求出λ,并求出這個(gè)定值,若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=-x2+ax-
1
4
a-
1
2
,
(1)若函數(shù)f(x)的值域?yàn)椋?∞,0],求實(shí)數(shù)a的值;
(2)當(dāng)x∈[0,1]時(shí),函數(shù)f(x)的最大值為2,求實(shí)數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a∈R,函數(shù)f(x)=
x
(x-a).
(Ⅰ)求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)求函數(shù)f(x)在區(qū)間[1,2]上的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a為實(shí)數(shù),函數(shù)f(x)=x3-ax2-4x+4a
(1)若a=
1
2
,求f(x)在[-2,2]上的最大值和最小值;
(2)若f(x)在(2,+∞)上是單調(diào)遞增的,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求平方值小于1000的最大正整數(shù),寫出一個(gè)算法的程序.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x2+2x-3
(1)指出圖象開口方向、對(duì)稱軸方程、頂點(diǎn)坐標(biāo);
(2)畫出函數(shù)圖象,并說明圖象是由f(x)=x2經(jīng)過怎樣的平移得到;
(3)求f(2)、f(
1
x
);
(4)判斷函數(shù)f(x)在(-∞,-1)上的單調(diào)性,并加以證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ax3-
3
2
(a+2)x2+6x-3.
(1)當(dāng)a>2時(shí),求函數(shù)f(x)的極小值;
(2)當(dāng)a<2時(shí),試討論方程f(x)=0根的個(gè)數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案