【題目】已知函數(shù)f(x)=lnx+ax2﹣ax,其中a∈R.
(1)當(dāng)a=0時(shí),求函數(shù)f(x)在x=1處的切線方程;
(2)若函數(shù)f(x)在定義域上有且僅有一個(gè)極值點(diǎn),求實(shí)數(shù)a的取值范圍;
(3)若對(duì)任意x∈[1,+∞),f(x)≥0恒成立,求實(shí)數(shù)a的取值范圍.
【答案】
(1)解:當(dāng)a=0,f(x)=lnx則f(1)=0
又 ,則切線的斜率k=1,
所以函數(shù)f(x)在x=1處的切線方程為y=x﹣1
(2)解:f(x)=lnx+ax2﹣ax,x>0,則 ,
令t(x)=2ax2﹣ax+1,
①若a=0,則t(x)=2ax2﹣ax+1=1>0,
故f'(x)>0,函數(shù)f(x)在(0,+∞)上單調(diào)遞增,
所以函數(shù)f(x)在(0,+∞)上無極值點(diǎn),
故a=0不符題意,舍去;
②若a<0, ,
該二次函數(shù)開口向下,對(duì)稱軸 , ,
所以t(x)=0在(0,+∞)上有且僅有一根 ,故f'(x0)=0,
且當(dāng)0<x<x0時(shí),t(x)>0,f'(x)>0,函數(shù)f(x)在(0,x0)上單調(diào)遞增;
當(dāng)x>x0時(shí),t(x)<0,f'(x)<0,函數(shù)f(x)在(x0,+∞)上單調(diào)遞減;
所以a<0時(shí),函數(shù)f(x)在定義域上有且僅有一個(gè)極值點(diǎn) ,符合題意;
③若a>0, ,該二次函數(shù)開口向上,對(duì)稱軸 .
(ⅰ)若 ,即0<a≤8, ,
故f'(x)≥0,函數(shù)f(x)在(0,+∞)上單調(diào)遞增,
所以函數(shù)f(x)在(0,+∞)上無極值點(diǎn),
故0<a≤8不符題意,舍去;
(ⅱ)若 ,即a>8,又t(0)=1>0,
所以方程t(x)=0在(0,+∞)上有兩根 , ,
故f'(x1)=f'(x2)=0,
且當(dāng)0<x<x1時(shí),t(x)>0,f'(x)>0,函數(shù)f(x)在(0,x1)上單調(diào)遞增;
當(dāng)x1<x<x2時(shí),t(x)<0,f'(x)<0,函數(shù)f(x)在(x1,x2)上單調(diào)遞減;
當(dāng)x>x2時(shí),t(x)>0,f'(x)>0,函數(shù)f(x)在(x2,+∞)上單調(diào)遞增;
所以函數(shù)f(x)在(0,+∞)上有兩個(gè)不同的極值點(diǎn),故a>8不符題意,舍去,
綜上所述,實(shí)數(shù)a的取值范圍是a<0
(3)解:由(2)可知,
①當(dāng)0≤a≤8時(shí),函數(shù)f(x)在(0,+∞)上單調(diào)遞增,
所以當(dāng)x∈[1,+∞)時(shí),f(x)≥f(1)=0,符合題意,
②當(dāng)a<0時(shí),t(1)=a+1,
(。┤魌(1)=a+1≤0,即a≤﹣1,函數(shù)f(x)在[1,+∞)上單調(diào)遞減,
故f(x)≤f(1)=0,不符題意,舍去,
(ⅱ)若t(1)=a+1>0,即﹣1<a<0,
故函數(shù)f(x)在(1,x0)上單調(diào)遞增,在(x0,+∞)上單調(diào)遞減,
當(dāng) 時(shí),
(事實(shí)上,令φ(x)=lnx﹣x+1,x≥1,則 ,
函數(shù)φ(x)在[1,+∞)上單調(diào)遞減,
所以φ(x)≤φ(1)=0,即lnx≤x﹣1對(duì)任意x∈[1,+∞)恒成立.)
所以存在 ,使得f(x)<0,故﹣1<a<0不符題意,舍去;
③當(dāng)a>8時(shí),t(1)=a+1>0,函數(shù)f(x)在[1,+∞)上單調(diào)遞增,
所以當(dāng)x∈[1,+∞)時(shí),f(x)≥f(1)=0,符合題意,
綜上所述,實(shí)數(shù)a的取值范圍是a≥0
【解析】(1)求出函數(shù)的導(dǎo)數(shù),求出函數(shù)的切線的斜率,從而求出切線方程即可;(2)求出函數(shù)的導(dǎo)數(shù),通過討論a的范圍,求出函數(shù)的單調(diào)性結(jié)合函數(shù)的極值點(diǎn)的個(gè)數(shù),求出a的范圍即可;(3)通過討論a的范圍,得到函數(shù)的單調(diào)性,求出函數(shù)的最值,從而判斷a的范圍即可.
【考點(diǎn)精析】本題主要考查了函數(shù)的極值與導(dǎo)數(shù)的相關(guān)知識(shí)點(diǎn),需要掌握求函數(shù)的極值的方法是:(1)如果在附近的左側(cè),右側(cè),那么是極大值(2)如果在附近的左側(cè),右側(cè),那么是極小值才能正確解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,四邊形ABCD是一個(gè)梯形,CD∥AB , CD=BO=1,△AOD為等腰直角三角形,O為AB的中點(diǎn),試求梯形ABCD水平放置的直觀圖的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,四棱錐P﹣ABCD中,AB⊥AD,AD⊥DC,PA⊥底面ABCD,PA=AD=AB= CD=1,M為PB的中點(diǎn).
(1)試在CD上確定一點(diǎn)N,使得MN∥平面PAD;
(2)點(diǎn)N在滿足(1)的條件下,求直線MN與平面PAB所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)= ax3﹣x2+x在區(qū)間(0,2)上是單調(diào)增函數(shù),則實(shí)數(shù)a的取值范圍為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=x3﹣ (k+1)x2+3kx+1,其中k∈R.
(1)當(dāng)k=3時(shí),求函數(shù)f(x)在[0,5]上的值域;
(2)若函數(shù)f(x)在[1,2]上的最小值為3,求實(shí)數(shù)k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù) ( 且 )是定義域?yàn)镽的奇函數(shù).
(1)求k的值;
(2)若 ,不等式 對(duì) 恒成立,求實(shí)數(shù)t的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)b和c分別是先后拋擲一枚骰子得到的點(diǎn)數(shù),用隨機(jī)變量ξ表示方程x2+bx+c=0實(shí)根的個(gè)數(shù)(重根按一個(gè)計(jì)).
(1)求方程x2+bx+c=0有實(shí)根的概率;
(2)(理)求ξ的分布列和數(shù)學(xué)期望 (文)求P(ξ=1)的值
(3)(理)求在先后兩次出現(xiàn)的點(diǎn)數(shù)中有5的條件下,方程x2+bx+c=0有實(shí)根的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在五面體 中,四邊形 是邊長(zhǎng)為 的正方形, 平面 , , , , .
(1)求證: 平面 ;
(2)求直線 與平面 所成角的正切值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com