【題目】已知圓心為 的圓過點和,且圓心在直線: 上.
(1)求圓心為的圓的標準方程;
(2)過點 作圓的切線,求切線方程.
【答案】(1)(2)或.
【解析】試題分析:(1)求圓的方程采用待定系數法,設出圓的方程,代入已知條件得到關于a,b,r的方程,從而得到圓的方程;(2)首先設出切線方程,利用點到直線的距離等于半徑得到直線斜率,從而求得切線方程
試題解析:(1)設所求的圓的方程為(x﹣a)2+(y﹣b)2=r2
依題意得:…
解得:a=﹣3,b=﹣2,r2=25
所以所求的圓的方程為:(x+3)2+(y+2)2=25…
(2)設所求的切線方程的斜率為k,則切線方程為y﹣8=k(x﹣2),即kx﹣y﹣2k+8=0
又圓心C(﹣3,﹣2)到切線的距離
又由d=r,即,解得…
∴所求的切線方程為3x﹣4y+26=0…
若直線的斜率不存在時,即x=2也滿足要求.
∴綜上所述,所求的切線方程為x=2或3x﹣4y+26=0
科目:高中數學 來源: 題型:
【題目】中日“釣魚島爭端”問題越來越引起社會關注,我校對高一名學生進行了一次“釣魚島”知識測試,并從中抽取了部分學生的成績,(滿分分)作為樣本,繪制了下面尚未完成的頻率分布表和頻率分布直方圖.
(1)填寫答題卡頻率分布表中的空格, 補全頻率分布直方圖, 并標出每個小矩形對應的縱軸數據;
(2)請你估算該年級的平均數及中位數.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,墻上有一壁畫,最高點A離地面4米,最低點B離地面2米.觀察者從距離墻x(x>1)米,離地面高a(1≤a≤2)米的C處觀賞該壁畫,設觀賞視角∠ACB=θ.
(1)若a=1.5,問:觀察者離墻多遠時,視角θ最大?
(2)若tanθ= ,當a變化時,求x的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在一張足夠大的紙板上截取一個面積為3600平方厘米的矩形紙板ABCD,然后在矩形紙板的四個角上切去邊長相等的小正方形,再把它的邊沿虛線折起,做成一個無蓋的長方體紙盒(如圖).設小正方形邊長為x厘米,矩形紙板的兩邊AB,BC的長分別為a厘米和b厘米,其中a≥b.
(1)當a=90時,求紙盒側面積的最大值;
(2)試確定a,b,x的值,使得紙盒的體積最大,并求出最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】學校餐廳每天供應500名學生用餐,每星期一有A、B兩種菜可供選擇.調查表明,凡是在這星期一選A種菜的,下星期一會有20%改選B種菜;而選B種菜的,下星期一會有30%改選A菜.用an , bn分別表示在第n個星期選A的人數和選B的人數,若a1=300,則a20=( )
A.260
B.280
C.300
D.320
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com