精英家教網 > 高中數學 > 題目詳情

【題目】已知圓心為 的圓過點,且圓心在直線 .

(1)求圓心為的圓的標準方程;

(2)過點 作圓的切線,求切線方程.

【答案】12.

【解析】試題分析:(1)求圓的方程采用待定系數法,設出圓的方程,代入已知條件得到關于a,b,r的方程,從而得到圓的方程;(2)首先設出切線方程,利用點到直線的距離等于半徑得到直線斜率,從而求得切線方程

試題解析:(1)設所求的圓的方程為(x﹣a2+y﹣b2=r2

依題意得:

解得:a=﹣3,b=﹣2,r2=25

所以所求的圓的方程為:(x+32+y+22=25…

2)設所求的切線方程的斜率為k,則切線方程為y﹣8=kx﹣2),即kx﹣y﹣2k+8=0

又圓心C﹣3,﹣2)到切線的距離

又由d=r,即,解得

所求的切線方程為3x﹣4y+26=0…

若直線的斜率不存在時,即x=2也滿足要求.

綜上所述,所求的切線方程為x=23x﹣4y+26=0

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】在四面體中, 底面的重心, 為線段上一點,且平面,則直線所成角的余弦值為__________

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】中日島爭端越來越引起社會關注,校對高一名學生進行了一次知識測試,并從中了部學生的成績滿分作為樣本,繪制了下面尚未完成的頻率分布表和頻率分布直方圖

1填寫答題卡頻率分布表中的空格, 補全頻率分布直方圖, 并標出每個小矩形對應的縱軸數據;

2請你估算該年級的平均數及中位數

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,墻上有一壁畫,最高點A離地面4米,最低點B離地面2米.觀察者從距離墻x(x>1)米,離地面高a(1≤a≤2)米的C處觀賞該壁畫,設觀賞視角∠ACB=θ.

(1)若a=1.5,問:觀察者離墻多遠時,視角θ最大?
(2)若tanθ= ,當a變化時,求x的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數

1)當時,求函數的單調區(qū)間;

2)是否存在實數,使恒成立,若存在,求出實數的取值范圍;若不存在,說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在一張足夠大的紙板上截取一個面積為3600平方厘米的矩形紙板ABCD,然后在矩形紙板的四個角上切去邊長相等的小正方形,再把它的邊沿虛線折起,做成一個無蓋的長方體紙盒(如圖).設小正方形邊長為x厘米,矩形紙板的兩邊AB,BC的長分別為a厘米和b厘米,其中ab

(1)當a=90時,求紙盒側面積的最大值;

(2)試確定a,b,x的值,使得紙盒的體積最大,并求出最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】學校餐廳每天供應500名學生用餐,每星期一有A、B兩種菜可供選擇.調查表明,凡是在這星期一選A種菜的,下星期一會有20%改選B種菜;而選B種菜的,下星期一會有30%改選A菜.用an , bn分別表示在第n個星期選A的人數和選B的人數,若a1=300,則a20=(
A.260
B.280
C.300
D.320

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知向量 =(sinθ,cosθ﹣2sinθ), =(1,2).
(1)若 ,求tanθ的值;
(2)若 ,求θ的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數 ,

(Ⅰ)當 時, 恒成立,求的取值范圍;

(Ⅱ)當 時,研究函數的零點個數;

(Ⅲ)求證: (參考數據: ).

查看答案和解析>>

同步練習冊答案