精英家教網 > 高中數學 > 題目詳情

已知圓C:x2+y2=9,點A(-5,0),直線l:x-2y=0.

(1)求與圓C相切,且與直線l垂直的直線方程;
(2)在直線OA上(O為坐標原點),存在定點B(不同于點A),滿足:對于圓C上任一點P,都有為一常數,試求所有滿足條件的點B的坐標.

(1)y=-2x±3(2)

解析

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

設橢圓C1和拋物線C2的焦點均在軸上,C1的中心和C2的頂點均為原點,從每條曲線上各取兩點,將其坐標記錄于下表中:


3
-2
4



0
-4

 
(1)求曲線C1,C2的標準方程;
(2)設直線與橢圓C1交于不同兩點M、N,且。請問是否存在直線過拋物線C2的焦點F?若存在,求出直線的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知中,頂點,邊上的中線所在直線的方程是,邊上高所在直線的方程是
(1)求點、C的坐標; (2)求的外接圓的方程.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知直線l:x+2y-2=0,試求:
(1) 點P(-2,-1)關于直線l的對稱點坐標;
(2) 直線l1:y=x-2關于直線l對稱的直線l2的方程;
(3) 直線l關于點(1,1)對稱的直線方程.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

設直線l的方程為(a+1)x+y+2-a=0(a∈R).
(1)若l在兩坐標軸上截距相等,求l的方程;
(2)若l不經過第二象限,求實數a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知兩直線l1axby+4=0,l2:(a-1)xyb=0.求分別滿足下列條件的a,b的值.
(1)直線l1過點(-3,-1),并且直線l1l2垂直;
(2)直線l1與直線l2平行,并且坐標原點到l1l2的距離相等.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

如圖,直線過點P(2,1),夾在兩已知直線之間的線段AB恰被點P平分.

(1)求直線的方程;
(2)設點D(0,m),且AD//,求:ABD的面積.

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

.已知直線,直線關于直線對稱,則直線的斜率是

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

在△ABC中,A(1,-1),B(1,1),C(3,-1),求三邊所在直線的傾斜角和斜率.

查看答案和解析>>

同步練習冊答案