【題目】我市為迎接一項(xiàng)重要的體育賽事,要完成,兩座場館的地基建造工程.某工程隊(duì)需要把600名工人分成兩組,一組完成場館的甲級標(biāo)準(zhǔn)地基2000,同時(shí)另一組完成場館的乙級標(biāo)準(zhǔn)地基3000;據(jù)測算,完成甲級標(biāo)準(zhǔn)地基每平方米的工程量為50人天,完成乙級標(biāo)準(zhǔn)地基每平方米的工程量為30人天.
(1)若工程隊(duì)分配名工人去場館,求場館地基和場館地基建造時(shí)間和(單位:天)的函數(shù)解析式;
(2)、兩個(gè)場館同時(shí)開工,該工程隊(duì)如何分配兩個(gè)場館的工人數(shù)量,可以使得工期最短.
(參考數(shù)據(jù):,,.備注:若地基面積為平方米,每平方米的工程量為人/天,工人數(shù)人,則工期為天.)
【答案】(1);(2) 分配名工人去場館,名工人去場館.
【解析】
(1)根據(jù)題意,以及備注內(nèi)容,即可分別求出的解析式;
(2)由(1)中所求,結(jié)合函數(shù)的單調(diào)性,要使得工期最短,只需,解方程即可求得.
(1)場館的面積為2000,每平方米的工程量為50人/天,現(xiàn)有名工人,
故可得場館地基建造時(shí)間;
場館的面積為3000,平方米的工程量為30人/天,現(xiàn)有名工人,
故可得場館地基建造時(shí)間;
綜上所述:.
(2)設(shè)工期為,則,其中.
容易知是單調(diào)減函數(shù),是單調(diào)增函數(shù),
故當(dāng)且僅當(dāng)兩個(gè)場館同時(shí)完工時(shí),工期最短.
令,即可得,
解得.
故分配名工人去場館,名工人去場館工期最短.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了解某班學(xué)生喜愛打籃球是否與性別有關(guān),對該班40名學(xué)生進(jìn)行了問卷調(diào)查,得到了如下的列聯(lián)表:
男生 | 女生 | 總計(jì) | |
喜愛打籃球 | 19 | 15 | 34 |
不喜愛打籃球 | 1 | 5 | 6 |
總計(jì) | 20 | 20 | 40 |
(1)在女生的20個(gè)個(gè)體中,隨機(jī)抽取2人,記隨機(jī)變量為抽到“不喜愛籃球”的人數(shù),求的分布列及數(shù)學(xué)期望;
(2)判斷能否在犯錯(cuò)誤的概率不超過0.1的條件下認(rèn)為喜愛籃球與性別有關(guān)?
附:,其中.
0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】成書于公元一世紀(jì)的我國經(jīng)典數(shù)學(xué)著作《九章算術(shù)》中有這樣一道名題,就是“引葭赴岸”問題,題目是:“今有池方一丈,點(diǎn)生其中央,出水一尺,引葭趕岸,適馬岸齊,問水深,葭長各幾何?”題意是:有一正方形池塘,邊長為一丈(10尺),有棵蘆葦長在它的正中央,高出水面部分有1尺長,把蘆葦拉向岸邊,恰好碰到沿岸(池塘一邊的中點(diǎn)),則水深為__________尺,蘆葦長__________尺.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】近年來,隨著國家綜合國力的提升和科技的進(jìn)步,截至年底,中國鐵路運(yùn)營里程達(dá)萬千米,這個(gè)數(shù)字比年增長了倍;高鐵運(yùn)營里程突破萬千米,占世界高鐵運(yùn)營里程的以上,居世界第一位.如表截取了年中國高鐵密度的發(fā)展情況(單位:千米/萬平方千米).
年份 | |||||
年份代碼 | |||||
高鐵密度 |
已知高鐵密度與年份代碼之間滿足關(guān)系式(為大于的常數(shù)).
(1)根據(jù)所給數(shù)據(jù),求關(guān)于的回歸方程(精確到位);
(2)利用(1)的結(jié)論,預(yù)測到哪一年,高鐵密度會超過千米/萬平方千米.
參考公式:設(shè)具有線性相關(guān)系的兩個(gè)變量的一組數(shù)據(jù)為,則回歸方程的系數(shù):,
參考數(shù)據(jù):,,,,,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知某保險(xiǎn)公司的某險(xiǎn)種的基本保費(fèi)為(單位:元),繼續(xù)購買該險(xiǎn)種的投保人稱為續(xù)保人,續(xù)保人本年度的保費(fèi)與其上年度出險(xiǎn)次數(shù)的關(guān)聯(lián)如下:
上年度出險(xiǎn)次數(shù) | 0 | 1 | 2 | 3 | ≥4 |
保費(fèi)(元) |
隨機(jī)調(diào)查了該險(xiǎn)種的名續(xù)保人在一年內(nèi)的出險(xiǎn)情況,得到下表:
出險(xiǎn)次數(shù) | 0 | 1 | 2 | 3 | ≥4 |
頻數(shù) | 280 | 80 | 24 | 12 | 4 |
該保險(xiǎn)公司這種保險(xiǎn)的賠付規(guī)定如下:
出險(xiǎn)序次 | 第1次 | 第2次 | 第3次 | 第4次 | 第5次及以上 |
賠付金額(元) |
將所抽樣本的頻率視為概率.
(1)求本年度續(xù)保人保費(fèi)的平均值的估計(jì)值;
(2)按保險(xiǎn)合同規(guī)定,若續(xù)保人在本年度內(nèi)出險(xiǎn)次,則可獲得賠付元;依此類推,求本年度續(xù)保人所獲賠付金額的平均值的估計(jì)值;
(3)續(xù)保人原定約了保險(xiǎn)公司的銷售人員在上午之間上門簽合同,因?yàn)槔m(xù)保人臨時(shí)有事,外出的時(shí)間在上午之間,請問續(xù)保人在離開前見到銷售人員的概率是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,,是某景區(qū)的兩條道路(寬度忽略不計(jì),為東西方向),Q為景區(qū)內(nèi)一景點(diǎn),A為道路上一游客休息區(qū),已知,(百米),Q到直線,的距離分別為3(百米),(百米),現(xiàn)新修一條自A經(jīng)過Q的有軌觀光直路并延伸至道路于點(diǎn)B,并在B處修建一游客休息區(qū).
(1)求有軌觀光直路的長;
(2)已知在景點(diǎn)Q的正北方6百米的P處有一大型組合音樂噴泉,噴泉表演一次的時(shí)長為9分鐘,表演時(shí),噴泉噴灑區(qū)域以P為圓心,r為半徑變化,且t分鐘時(shí),(百米)(,).當(dāng)噴泉表演開始時(shí),一觀光車S(大小忽略不計(jì))正從休息區(qū)B沿(1)中的軌道以(百米/分鐘)的速度開往休息區(qū)A,問:觀光車在行駛途中是否會被噴泉噴灑到,并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知橢圓C:()的上頂點(diǎn)為,離心率為.
(1)求橢圓C的方程;
(2)若過點(diǎn)A作圓(圓在橢圓C內(nèi))的兩條切線分別與橢圓C相交于B,D兩點(diǎn)(B,D不同于點(diǎn)A),當(dāng)r變化時(shí),試問直線BD是否過某個(gè)定點(diǎn)?若是,求出該定點(diǎn);若不是,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某土特產(chǎn)超市為預(yù)估2020年元旦期間游客購買土特產(chǎn)的情況,對2019年元旦期間的90位游客購買情況進(jìn)行統(tǒng)計(jì),得到如下人數(shù)分布表.
購買金額(元) | ||||||
人數(shù) | 10 | 15 | 20 | 15 | 20 | 10 |
(1)根據(jù)以上數(shù)據(jù)完成列聯(lián)表,并判斷是否有的把握認(rèn)為購買金額是否少于60元與性別有關(guān).
不少于60元 | 少于60元 | 合計(jì) | |
男 | 40 | ||
18 | |||
合計(jì) |
(2)為吸引游客,該超市推出一種優(yōu)惠方案,購買金額不少于60元可抽獎(jiǎng)3次,每次中獎(jiǎng)概率為(每次抽獎(jiǎng)互不影響,且的值等于人數(shù)分布表中購買金額不少于60元的頻率),中獎(jiǎng)1次減5元,中獎(jiǎng)2次減10元,中獎(jiǎng)3次減15元.若游客甲計(jì)劃購買80元的土特產(chǎn),請列出實(shí)際付款數(shù)(元)的分布列并求其數(shù)學(xué)期望.
附:參考公式和數(shù)據(jù):,.
附表:
2.072 | 2.706 | 3.841 | 6.635 | 7.879 | |
0.150 | 0.100 | 0.050 | 0.010 | 0.005 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】“總把新桃換舊符”(王安石)、“燈前小草寫桃符”(陸游),春節(jié)是中華民族的傳統(tǒng)節(jié)日,在宋代人們用寫“桃符”的方式來祈福避禍,而現(xiàn)代人們通過貼“!弊、貼春聯(lián)、掛燈籠等方式來表達(dá)對新年的美好祝愿,某商家在春節(jié)前開展商品促銷活動(dòng),顧客凡購物金額滿50元,則可以從“!弊帧⒋郝(lián)和燈籠這三類禮品中任意免費(fèi)領(lǐng)取一件,若有4名顧客都領(lǐng)取一件禮品,則他們中有且僅有2人領(lǐng)取的禮品種類相同的概率是( )
A.B.C.D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com