如圖,在三棱錐P-ABC中,PA=PB=AB=2,BC=3,∠ABC=90°,平面PAB⊥平面ABC,D、E分別為AB、AC中點(diǎn).
(Ⅰ)求證:DE∥平面PBC;
(Ⅱ)求證:AB⊥PE;
(Ⅲ)求二面角A-PB-E的大小.
(Ⅰ)由D、E分別為AB、AC中點(diǎn),得DE∥BC .可得DE∥平面PBC
(Ⅱ)連結(jié)PD,由PA=PB,得PD ⊥ AB. DE∥BC,BC ⊥ AB,推出DE ⊥ AB.
AB⊥平面PDE,得到AB⊥PE .
(Ⅲ)證得PD平面ABC 。
以D為原點(diǎn)建立空間直角坐標(biāo)系。
二面角的A-PB-E的大小為.
解析試題分析:(Ⅰ)D、E分別為AB、AC中點(diǎn),\DE∥BC .
DEË平面PBC,BCÌ平面PBC,∴DE∥平面PBC
(Ⅱ)連結(jié)PD, PA=PB, PD ⊥ AB. DE∥BC,BC ⊥ AB, DE ⊥ AB.又AB⊥平面PDE,PEÌ平面PDE,AB⊥PE . 6分
(Ⅲ)平面PAB平面ABC,平面PAB平面ABC=AB,PD AB,
PD平面ABC. 7分
如圖,以D為原點(diǎn)建立空間直角坐標(biāo)系
B(1,0,0),P(0,0,),E(0,,0) ,
=(1,0, ), ="(0," , ).
設(shè)平面PBE的法向量,
令 得.
DE⊥平面PAB,平面PAB的法向量為.
設(shè)二面角的A-PB-E大小為
由圖知,,,
二面角的A-PB-E的大小為.
考點(diǎn):立體幾何中的平行關(guān)系、垂直關(guān)系,角的計(jì)算,空間向量的應(yīng)用。
點(diǎn)評(píng):典型題,立體幾何題,是高考必考內(nèi)容,往往涉及垂直關(guān)系、平行關(guān)系、角、距離、體積的計(jì)算。在計(jì)算問(wèn)題中,有“幾何法”和“向量法”。利用幾何法,要遵循“一作、二證、三計(jì)算”的步驟,本題利用空間向量,簡(jiǎn)化了證明及計(jì)算過(guò)程。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,在直三棱柱ABC-A1B1C1中,D,E分別是AB,BB1的中點(diǎn),AA1=AC=CB=AB.
(1)證明:BC1∥平面A1CD;
(2)求二面角D-A1C-E的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,平面ABCD⊥平面ADEF,其中ABCD為矩形,ADEF為梯形,AF∥DE,AF⊥FE,AF=AD=2DE=2.
(Ⅰ)求異面直線(xiàn)EF與BC所成角的大小;
(Ⅱ)若二面角A-BF-D的平面角的余弦值為,求AB的長(zhǎng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,邊長(zhǎng)為2的正方形中,點(diǎn)是的中點(diǎn),點(diǎn)是的中點(diǎn),將△、△分別沿、折起,使、兩點(diǎn)重合于點(diǎn),連接,.
(1)求證:;
(2)求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,平面平面,是等腰直角三角形,,四邊形是直角梯形,,,,點(diǎn)、分別為、的中點(diǎn).
(1)求證:平面;
(2)求直線(xiàn)和平面所成角的正弦值;
(3)能否在上找到一點(diǎn),使得平面?若能,請(qǐng)指出點(diǎn)的位置,并加以證明;若不能,請(qǐng)說(shuō)明理由 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,四棱錐P—ABCD中,為邊長(zhǎng)為2的正三角形,底面ABCD為菱形,且平面PAB⊥平面ABCD,,E為PD點(diǎn)上一點(diǎn),滿(mǎn)足
(1)證明:平面ACE平面ABCD;
(2)求直線(xiàn)PD與平面ACE所成角正弦值的大。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,在邊長(zhǎng)為的正方體中,、分別是、的中點(diǎn),試用向量的方法:
求證:平面;
求與平面所成的角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本大題12分)如圖,在棱長(zhǎng)為ɑ的正方體ABCD-A1B1C1D1中,E、F、G分別是CB、CD、CC1的中點(diǎn).
(1)求直線(xiàn)C與平面ABCD所成角的正弦的值;
(2)求證:平面A B1D1∥平面EFG;
(3)求證:平面AA1C⊥面EFG .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:單選題
經(jīng)過(guò)兩直線(xiàn)與的交點(diǎn),且平行于直線(xiàn)的直線(xiàn)方程是( ).
A. | B. |
C. | D. |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com