【題目】某工廠利用隨機(jī)數(shù)表對生產(chǎn)的600個零件進(jìn)行抽樣測試,先將600個零件進(jìn)行編號,編號分別為001,002,599,600從中抽取60個樣本,如下提供隨機(jī)數(shù)表的第4行到第6行:

32 21 18 34 29 78 64 54 07 32 52 42 06 44 38 12 23 43 56 77 35 78 90 56 42

84 42 12 53 31 34 57 86 07 36 25 30 07 32 86 23 45 78 89 07 23 68 96 08 04

32 56 78 08 43 67 89 53 55 77 34 89 94 83 75 22 53 55 78 32 45 77 89 23 45

若從表中第6行第6列開始向右依次讀取3個數(shù)據(jù),則得到的第6個樣本編號  

A. 522B. 324C. 535D. 578

【答案】D

【解析】

根據(jù)隨機(jī)抽樣的定義進(jìn)行判斷即可.

行第列開始的數(shù)為(不合適),(不合適),,,(不合適),(不合適),,(重復(fù)不合適),

則滿足條件的6個編號為,,,

則第6個編號為

本題正確選項:

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某商場經(jīng)營一批進(jìn)價是30/件的商品,在市場試銷中發(fā)現(xiàn),此商品銷售價元與日銷售量件之間有如下關(guān)系:

x

45

50

y

27

12

1)確定的一個一次函數(shù)關(guān)系式;

2)若日銷售利潤為P元,根據(jù)(I)中關(guān)系寫出P關(guān)于的函數(shù)關(guān)系,并指出當(dāng)銷售單價為多少元時,才能獲得最大的日銷售利潤?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),,,為自然對數(shù)的底數(shù).

(Ⅰ)若函數(shù)上存在零點,求實數(shù)的取值范圍;

(Ⅱ)若函數(shù)處的切線方程為.求證:對任意的,總有.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在直角坐標(biāo)系中,點到拋物線的準(zhǔn)線的距離為.上的定點,,上的兩動點,且線段的中點在直線.

(Ⅰ)求曲線的方程及的值;

(Ⅱ)記,的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在我國南宋數(shù)學(xué)家楊輝所著的《詳解九章算法》(1261年)一書中,用如圖所示的三角形,解釋二項和的乘方規(guī)律.在歐洲直到1623年以后,法國數(shù)學(xué)家布萊士帕斯卡的著作(1655年)介紹了這個三角形,近年來,國外也逐漸承認(rèn)這項成果屬于中國,所以有些書上稱這是“中國三角形”,如圖.17世紀(jì)德國數(shù)學(xué)家萊布尼茨發(fā)現(xiàn)了“萊布尼茨三角形”,如圖.在楊輝三角中,相鄰兩行滿足關(guān)系式:,其 中是行數(shù),.請類比上式,在萊布尼茨三角形中相鄰兩行滿足的關(guān)系式是__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓為參數(shù))與軸正半軸,軸正半軸的交點分別為,動點是橢圓上任一點,則面積的最大值為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)A{x|2x2ax20}B{x|x23x2a0},且AB{2}

(1)a的值及集合A,B

(2)設(shè)全集UAB,求(UA)(UB);

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在平面直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù)),以坐標(biāo)原點為極點, 軸的正半軸為極軸建立極坐標(biāo)系,已知曲線的極坐標(biāo)方程為.

(1)求曲線的普通方程與曲線的直角坐標(biāo)方程;

(2)曲線相交于兩點,求過兩點且面積最小的圓的標(biāo)準(zhǔn)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知命題方程表示焦點在軸上的橢圓,命題雙曲線的離心率,若“”為假命題,“”為真命題,則的取值范圍是__________

查看答案和解析>>

同步練習(xí)冊答案