已知命題p:x2+4x>0q:
x2-16
x
<0
?p是?q的( 。
A、充分不必要條件
B、必要不充分條件
C、充要條件
D、既不充分也不必要條件
分析:分別求出命題所對(duì)應(yīng)的集合,利用其包含關(guān)系進(jìn)行判斷.
解答:解:命題?p對(duì)應(yīng)的集合A為[-4,0],命題?q對(duì)應(yīng)的集合B為[-4,0]∪[4,+∞),
由于A⊆B,所以?p是?q的充分不必要條件,
故選A.
點(diǎn)評(píng):運(yùn)用集合思想來判斷充分條件和必要條件是一種行之有效的方法.要注意用集合的觀點(diǎn)來看四種條件,體現(xiàn)數(shù)形結(jié)合的思想
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

1、已知命題p:x2-2x-15≤0,命題q:x2-2x-m2+1≤0,且?p是?q的必要不充分條件,則實(shí)數(shù)m的取值范圍為
m<-4或m>4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知命題p:x2+x+2-m=0有一正一負(fù)兩根,命題q:4x2+4(m-2)x+1=0無實(shí)根,若命題p與命題q有且只有一個(gè)為真,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知命題p:x2≤5x-4,命題q:x2-(a+2)x+2a≤0
(1)求命題p中對(duì)應(yīng)x的范圍;
(2)若p是q的必要不充分條件,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知命題p:x2-3x-4≤0;q:(x-1)2-a2≥0(a>0).若p是?q的充分不必要條件,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知命題p:|x-4|≤6構(gòu)成集合為A,q:x2-2x+1-a2≤0(a>0)構(gòu)成集合為B
(1)求集合A,B
(2)若非p是非q的必要不充分條件,求a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案