關(guān)于x的方程x2+2(m+1)x+2m+6=0的兩實(shí)根為α和β,根據(jù)下列條件求m的范圍.
(1)α<2<β;
(2)α<1且β>3.
考點(diǎn):一元二次方程的根的分布與系數(shù)的關(guān)系
專(zhuān)題:計(jì)算題,函數(shù)的性質(zhì)及應(yīng)用
分析:令f(x)=x2+2(m+1)x+2m+6,將方程的根化為函數(shù)圖象與x軸的交點(diǎn).
解答: 解:令f(x)=x2+2(m+1)x+2m+6,
(1)∵α<2<β,
∴f(2)=4+4(m+1)+2m+6<0,
解得,m<-
7
3
;
(3)∵α<1且β>3,
∴f(1)=1+2m+2+2m+6<0,
f(3)=9+2(m+1)3+2m+6<0,
解得,m<-
21
8
點(diǎn)評(píng):本題考查了方程的根與函數(shù)的零點(diǎn)之間的關(guān)系,借助圖象解答,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

雙曲線C:x2-
y2
b2
=1的右焦點(diǎn)為F,雙曲線過(guò)定點(diǎn)P(2,3).
(1)求雙曲線C的方程及右準(zhǔn)線l方程;
(2)過(guò)右焦點(diǎn)F的直線(不過(guò)P點(diǎn))與雙曲線交于A,B兩點(diǎn),記PA,PB的斜率為k1,k2:若k1+k2>2,求直線AB斜率的取值范圍,若直線AB與直線l交于M,記PM的斜率為k3,若k3=0,求k1+k2的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)cos(
π
4
+x)=
3
5
,
17π
12
<x<
4
,求
2sinxcosx+2sin2x
1-tanx
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若函數(shù)f(x)=
1-3x
1+3x
,x∈(a,1)是非奇非偶函數(shù),則實(shí)數(shù)a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

一個(gè)口袋里裝有7個(gè)白球和1個(gè)紅球,從口袋任取5個(gè)球.
(1)共有多少種不同的取法?
(2)其中恰有一個(gè)紅球,共有多少種不同的取法?
(3)其中不含紅球,共有多少種不同的取法?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)集合A={-2},B={x|ax+1=0,a∈R},若A∩B=B,則a的取值集合為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

將函數(shù)y=Asinωx+b(A,ω,b均為正實(shí)數(shù))的圖象向左平移
π
12
個(gè)單位,平移后的圖象如圖,則平移后的圖象對(duì)應(yīng)的函數(shù)解析式為( 。
A、y=2sin(x+
π
6
)+1
B、y=
5
2
sin(x-
π
6
)-
3
2
C、y=
5
4
sin(2x+
π
6
)+
1
4
D、y=
5
4
sin(2x-
π
3
)+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知定義在R上的函數(shù)f(x),滿足f(1+x)=f(1-x),f(x)=f(4-x).且當(dāng)x∈[-1,1]時(shí),f(x)=ex,則f(2013)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

sin(
π
4
+A)cos(
π
4
+B)化為和差的結(jié)果是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案