【題目】如果對于函數(shù)定義域內任意的兩個自變量的值,,當時,都有,且存在兩個不相等的自變量值,,使得,就稱為定義域上的不嚴格的增函數(shù)”.下列所給的四個函數(shù)中為不嚴格增函數(shù)的是(

A.;B.

C.;D..

【答案】AC

【解析】

根據(jù)新定義,結合函數(shù)的定義域和解析式,借助分析法和特殊值,即可判斷各選項是否為不嚴格的增函數(shù)”.

由已知可知函數(shù)定義域內任意的兩個自變量的值,當時,都有,且存在兩個不相等的自變量值,,使得,就稱為定義域上的不嚴格的增函數(shù).

A.,滿足條件,為定義在R上的不嚴格的增函數(shù);

B.,當,,,故不是不嚴格的增函數(shù);

C.,滿足條件,為定義在R上的不嚴格的增函數(shù);

D.,當,故不是不嚴格的增函數(shù),

故已知的四個函數(shù)中為不嚴格增函數(shù)的是AC.

故選:AC.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】阿基米德是古希臘偉大的哲學家、數(shù)學家、物理學家,對幾何學、力學等學科作出過卓越貢獻.為調查中學生對這一偉大科學家的了解程度,某調查小組隨機抽取了某市的100名高中生,請他們列舉阿基米德的成就,把能列舉阿基米德成就不少于3項的稱為“比較了解”,少于三項的稱為“不太了解”.

調查結果如下:

0項

1項

2項

3項

4項

5項

5項以上

理科生(人)

1

10

17

14

14

10

4

文科生(人)

0

8

10

6

3

2

1

(1)完成如下列表,并判斷是否由的把握認為.了解阿基米德與選擇文理科有關?

比較了解

不太了解

合計

理科生

p>

文科生

合計

(2)在抽取的100名高中生中,按照文理科采用分層抽樣的方法抽取10人的樣本.

(i)求抽取的文科生和理科生的人數(shù);

(ii)從10人的樣本中隨機抽取兩人,求兩人都是文科生的概率.

0.100

0.050

0.010

0.001

2.706

3.841

6.635

10.828

.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】冠狀病毒是一個大型病毒家族,己知可引起感冒以及中東呼吸綜合征()和嚴重急性呼吸綜合征()等較嚴重疾病.而今年出現(xiàn)在湖北武漢的新型冠狀病毒()是以前從未在人體中發(fā)現(xiàn)的冠狀病毒新毒株.人感染了新型冠狀病毒后常見體征有呼吸道癥狀、發(fā)熱、咳嗽、氣促和呼吸困難等.在較嚴重病例中,感染可導致肺炎、嚴重急性呼吸綜合征、腎衰竭,甚至死亡.

某醫(yī)院為篩查冠狀病毒,需要檢驗血液是否為陽性,現(xiàn)有n)份血液樣本,有以下兩種檢驗方式:

方式一:逐份檢驗,則需要檢驗n.

方式二:混合檢驗,將其中k)份血液樣本分別取樣混合在一起檢驗.

若檢驗結果為陰性,這k份的血液全為陰性,因而這k份血液樣本只要檢驗一次就夠了,如果檢驗結果為陽性,為了明確這k份血液究竟哪幾份為陽性,就要對這k份再逐份檢驗,此時這k份血液的檢驗次數(shù)總共為.

假設在接受檢驗的血液樣本中,每份樣本的檢驗結果是陽性還是陰性都是獨立的,且每份樣本是陽性結果的概率為p.現(xiàn)取其中k)份血液樣本,記采用逐份檢驗方式,樣本需要檢驗的總次數(shù)為,采用混合檢驗方式,樣本需要檢驗的總次數(shù)為.

1)若,試求p關于k的函數(shù)關系式;

2)若p與干擾素計量相關,其中)是不同的正實數(shù),

滿足)都有成立.

i)求證:數(shù)列等比數(shù)列;

ii)當時,采用混合檢驗方式可以使得樣本需要檢驗的總次數(shù)的期望值比逐份檢驗的總次數(shù)的期望值更少,求k的最大值

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),.

1)討論在區(qū)間上的單調性;

2)若時,,求整數(shù)的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在新高考改革中,打破了文理分科的模式,不少省份采用了,等模式.其中模式的操作又更受歡迎,即語數(shù)外三門為必考科目,然后在物理和歷史中選考一門,最后從剩余的四門中選考兩門.某校為了了解學生的選科情況,從高二年級的2000名學生(其中男生1100人,女生900人)中,采用分層抽樣的方法從中抽取n名學生進行調查.

1)已知抽取的n名學生中含男生110人,求n的值及抽取到的女生人數(shù);

2)在(1)的情況下對抽取到的n名同學選物理選歷史進行問卷調查,得到下列2×2列聯(lián)表.請將列聯(lián)表補充完整,并判斷是否有99%的把握認為選科目與性別有關?

選物理

選歷史

合計

男生

90

女生

30

合計

3)在(2)的條件下,從抽取的選歷史的學生中按性別分層抽樣再抽取5名,再從這5名學生中抽取2人了解選政治、地理、化學、生物的情況,求2人至少有1名男生的概率.

參考公式:.

0.10

0.010

0.001

2.706

6.635

10.828

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某攝影協(xié)會在201910月舉辦了主題慶祖國70華誕——我們都是追夢人攝影圖片展.通過平常人的鏡頭,記錄了國強民富的幸福生活,向祖國母親70歲的生日獻了一份厚禮.攝影協(xié)會收到了來自社會各界的大量作品,從眾多照片中選取100張照片展出,其參賽者年齡集中在之間,根據(jù)統(tǒng)計結果,做出頻率分布直方圖如下:

1)求這100位作者年齡的樣本平均數(shù)和樣本方差(同一組數(shù)據(jù)用該區(qū)間的中點值作代表);

2)由頻率分布直方圖可以認為,作者年齡X服從正態(tài)分布,其中近似為樣本平均數(shù),近似為樣本方差.

i)利用該正態(tài)分布,求;

附:,若,則,.

ii)攝影協(xié)會從年齡在的作者中,按照分層抽樣的方法,抽出了7人參加講述圖片背后的故事座談會,現(xiàn)要從中選出3人作為代表發(fā)言,設這3位發(fā)言者的年齡落在區(qū)間的人數(shù)是Y,求變量Y的分布列和數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的離心率為,且經過點.

1)求橢圓的方程;

2)過點作直線交橢圓兩點,若點關于軸的對稱點為,證明直線過定點.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在四棱錐中,平面,點是矩形內(含邊界)的動點,且,,直線與平面所成的角為.記點的軌跡長度為,則______;當三棱錐的體積最小時,三棱錐的外接球的表面積為______.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某餐廳通過查閱了最近5次食品交易會參會人數(shù) (萬人)與餐廳所用原材料數(shù)量 (袋),得到如下統(tǒng)計表:

第一次

第二次

第三次

第四次

第五次

參會人數(shù) (萬人)

13

9

8

10

12

原材料 (袋)

32

23

18

24

28

(1)根據(jù)所給5組數(shù)據(jù),求出關于的線性回歸方程.

(2)已知購買原材料的費用 (元)與數(shù)量 (袋)的關系為

投入使用的每袋原材料相應的銷售收入為700元,多余的原材料只能無償返還,據(jù)悉本次交易大會大約有15萬人參加,根據(jù)(1)中求出的線性回歸方程,預測餐廳應購買多少袋原材料,才能獲得最大利潤,最大利潤是多少?(注:利潤銷售收入原材料費用).

參考公式: .

參考數(shù)據(jù): , .

查看答案和解析>>

同步練習冊答案