若F1,F(xiàn)2是橢圓數(shù)學(xué)公式的兩個(gè)焦點(diǎn),過(guò)F1作直線(xiàn)與橢圓交于A,B兩點(diǎn),△ABF2的周長(zhǎng)為_(kāi)_______.

20
分析:由橢圓方程求得a=6,,△ABF2的周長(zhǎng)是 ( AF1+AF2 )+(BF1=BF2),由橢圓的定義知,AF1+AF2=2a,BF1+BF2=2a,從而求出△ABF2的周長(zhǎng).
解答:由橢圓可得,a=5,b=3,
△ABF2的周長(zhǎng)是 ( AF1+AF2 )+(BF1+BF2)=2a+2a=4a=20,
故答案為:20.
點(diǎn)評(píng):本題考查橢圓的定義、橢圓的標(biāo)準(zhǔn)方程,以及橢圓的簡(jiǎn)單性質(zhì)的應(yīng)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)p是橢圓
x2
25
+
y2
16
=1
上的點(diǎn).若F1,F(xiàn)2是橢圓的兩個(gè)焦點(diǎn),則|PF1|+|PF2|等于( 。
A、4B、5C、8D、10

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若F1,F(xiàn)2是橢圓的兩個(gè)焦點(diǎn),P是橢圓上一點(diǎn),當(dāng)PF1⊥PF2,且∠PF1F2=300,則橢圓的離心率為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)M是橢圓
x2
9
+
y2
4
=1
上的任意一點(diǎn),若F1,F(xiàn)2是橢圓的兩個(gè)焦點(diǎn),則|MF1|+|MF2|等于( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)P是橢圓
x2
25
+
y2
16
=1
上的點(diǎn).若F1、F2是橢圓的兩個(gè)焦點(diǎn),則PF1+PF2=
10
10

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013屆福建省漳州市高二上學(xué)期期末考試?yán)砜茢?shù)學(xué)試卷 題型:選擇題

設(shè)P的橢圓上的點(diǎn),若F1、F2是橢圓的兩個(gè)焦點(diǎn),則︱PF1︱+︱PF2︱等于(   )

  A、4        B、5             C、8            D、10

 

查看答案和解析>>

同步練習(xí)冊(cè)答案