【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系xOy中,曲線C的參數(shù)方程為 (α為參數(shù)),直線l的參數(shù)方程為 (t為參數(shù)),在以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸為正半軸為極軸的極坐標(biāo)系中,過極點(diǎn)O的射線與曲線C相交于不同于極點(diǎn)的點(diǎn)A,且點(diǎn)A的極坐標(biāo)為(2 ,θ),其中θ∈( ,π)
(Ⅰ)求θ的值;
(Ⅱ)若射線OA與直線l相交于點(diǎn)B,求|AB|的值.

【答案】解:(Ⅰ)曲線C的參數(shù)方程為 (α為參數(shù)),普通方程為x2+(y﹣2)2=4,極坐標(biāo)方程為ρ=4sinθ,
∵點(diǎn)A的極坐標(biāo)為(2 ,θ),θ∈( ,π),∴θ=
(Ⅱ)直線l的參數(shù)方程為 (t為參數(shù)),普通方程為x+ y﹣4 =0,
點(diǎn)A的直角坐標(biāo)為(﹣ ,3),射線OA的方程為y=﹣ x,
代入x+ y﹣4 =0,可得B(﹣2 ,6),∴|AB|= =2
【解析】(Ⅰ)曲線C的極坐標(biāo)方程,利用點(diǎn)A的極坐標(biāo)為(2 ,θ),θ∈( ,π),即可求θ的值;(Ⅱ)若射線OA與直線l相交于點(diǎn)B,求出A,B的坐標(biāo),即可求|AB|的值.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點(diǎn)在拋物線上,則當(dāng)點(diǎn)到點(diǎn)的距離與點(diǎn)到拋物線焦點(diǎn)距離之和取得最小值時(shí),點(diǎn)的坐標(biāo)為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知f(x)是定義在R上的奇函數(shù),當(dāng)x>0時(shí),f(x)= x3+ax(a∈R),且曲線f(x)在x= 處的切線與直線y=﹣ x﹣1平行.
(Ⅰ)求a的值及函數(shù)f(x)的解析式;
(Ⅱ)若函數(shù)y=f(x)﹣m在區(qū)間[﹣3, ]上有三個(gè)零點(diǎn),求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=ax(a>0,a≠1)的反函數(shù)的圖象經(jīng)過點(diǎn)( , ).若函數(shù)g(x)的定義域?yàn)镽,當(dāng)x∈[﹣2,2]時(shí),有g(shù)(x)=f(x),且函數(shù)g(x+2)為偶函數(shù),則下列結(jié)論正確的是(
A.g(π)<g(3)<g(
B.g(π)<g( )<g(3)??
C.g( )<g(3)<g(π)
D.g( )<g(π)<g(3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知梯形CDEF與△ADE所在平面垂直,AD⊥DE,CD⊥DE,AB∥CD∥EF,AE=2DE=8,AB=3,EF=9.CD=12,連接BC,BF.

(Ⅰ)若G為AD邊上一點(diǎn),DG= DA,求證:EG∥平面BCF;
(Ⅱ)求二面角E﹣BF﹣C的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,四棱錐中,底面,,,,的中點(diǎn).

(1)求證:平面

(2)求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】過雙曲線 的右支上的一點(diǎn)P作一直線l與兩漸近線交于A、B兩點(diǎn),其中P是AB的中點(diǎn);
(1)求雙曲線的漸近線方程;
(2)當(dāng)P坐標(biāo)為(x0 , 2)時(shí),求直線l的方程;
(3)求證:|OA||OB|是一個(gè)定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知等差數(shù)列{an}的前n項(xiàng)和為Sn , 若Sm1=﹣4,Sm=0,Sm+2=14(m≥2,且m∈N*).
(1)求m的值;
(2)若數(shù)列{bn}滿足 =logabn(n∈N*),求數(shù)列{(an+6)bn}的前n項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的左、右焦點(diǎn)分別為F1(-c,0),F(xiàn)2(c,0),直線交橢圓E于A,B兩點(diǎn),△ABF1的周長為16,△AF1F2的周長為12.

(1)求橢圓E的標(biāo)準(zhǔn)方程與離心率;

(2)若直線l與橢圓E交于C,D兩點(diǎn),且P(2,2)是線段CD的中點(diǎn),求直線l的一般方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案