Processing math: 88%
12.如果三棱錐A-BCD的底面BCD是正三角形,頂點(diǎn)A在底面BCD上的射影是△BCD的中心,則這樣的三棱錐稱為正三棱錐.給出下列結(jié)論:
①正三棱錐A-BCD中必有AB⊥CD,BC⊥AD,AC⊥BD;
②正三棱錐A-BCD所有相對(duì)棱中點(diǎn)連線必交于一點(diǎn);
③當(dāng)正三棱錐A-BCD所有棱長(zhǎng)都相等時(shí),該棱錐內(nèi)切球和外接球半徑之比為1:2;
④若正三棱錐A-BCD的側(cè)棱長(zhǎng)均為2,側(cè)面三角形的頂角為40°,過(guò)點(diǎn)B的平面分別交側(cè)棱AC,AD于M,N,則△BMN周長(zhǎng)的最小值等于23
以上結(jié)論正確的是①②④.(寫出所有正確命題的序號(hào)).

分析 根據(jù)正三棱錐的定義,對(duì)每個(gè)命題進(jìn)行判斷,即可得出結(jié)論.

解答 解:①正三棱錐A-BCD中,正三棱錐頂點(diǎn)A在底面BCD上的射影是△BCD的中心,必有AB⊥CD,BC⊥AD,AC⊥BD,正確;
②利用平行四邊形的性質(zhì),可得正三棱錐A-BCD所有相對(duì)棱中點(diǎn)連線必交于一點(diǎn),正確;
③當(dāng)正三棱錐A-BCD所有棱長(zhǎng)都相等時(shí),該棱錐內(nèi)切球和外接球半徑之比為1:3,不正確;
④若正三棱錐A-BCD的側(cè)棱長(zhǎng)均為2,一個(gè)側(cè)面的頂角為40°,過(guò)點(diǎn)B的平面分別交側(cè)棱AC,AD于M,N.則△BMN周長(zhǎng)的最小值等于4+42×2×2×12=23,故正確.
故答案為①②④.

點(diǎn)評(píng) 本題綜合考查空間線面關(guān)系,類比、轉(zhuǎn)化思想,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.對(duì)于給定數(shù)列{xn},若存在一個(gè)常數(shù)k∈N*,對(duì)于任意的n∈N*,使得xn+k=xn成立,則稱數(shù)列{xn}是周期數(shù)列,k是數(shù)列{xn}的一個(gè)周期,若k是數(shù)列{xn}的周期,且1,2,…,k-1均不是數(shù)列{xn}的周期,則稱k為數(shù)列{xn}的最小周期.已知數(shù)列{an}的最小周期為4,前n項(xiàng)和為Sn,且4Sn=(an+1)2
(1)求a1的值;
(2)求數(shù)列{an}通項(xiàng)公式an和前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.函數(shù)f(x)=ex+x2+x+1與g(x)的圖象關(guān)于直線2x-y-3=0對(duì)稱,P,Q分別是函數(shù)f(x),g(x)圖象上的動(dòng)點(diǎn),則|PQ|的最小值為25

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.如圖,在△ABC中,AB=BC=2,∠ABC=30°,AD是邊BC上的高,則ADAC的值等于1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.已知偶函數(shù)f(x)在[0,+∞)上單調(diào)遞減,則滿足f3x+12f52的x的取值范圍是( �。�
A.(-∞,23B.(-∞,-1)C.(-l,23D.(-∞,-1)∪(23,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.設(shè)函數(shù)f(x)=xx+3(x>0),觀察:f1(x)=f(x)=xx+3,f2(x)=f(f1(x))=x4x+9,
f3(x)=f(f2(x))=x13x+27,f4(x)=f(f3(x))=x40x+81…,根據(jù)以上事實(shí),由歸納推理可得:當(dāng)n∈N*,n≥2時(shí),fn(x)=f (fn-1(x))=x3n12x+3n

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.已知直線l1:2x-y-3=0,l2:x-my+1-3m=0,m∈R.
(1)若l1∥l2,求實(shí)數(shù)m的值;
(2)若l2在兩坐標(biāo)軸上有截距相等,求直線l2的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.化簡(jiǎn)\frac{sin15°cos9°-cos66°}{sin15°sin9°+sin66°}的結(jié)果是( �。�
A.tan9°B.-tan9°C.tan15°D.-tan15°

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.函數(shù)y=3x-x3,x∈[-1,\sqrt{3}]的值域是[-2,2].

查看答案和解析>>

同步練習(xí)冊(cè)答案