已知函數(shù)f(x)lnx-
a
x
,其中a∈R,且曲線y=f(x)在點(diǎn)(1,f(1))處的切線垂直于直線y=x.
(1)求a的值;
(2)求函數(shù)f(x)的單調(diào)區(qū)間和極值.
考點(diǎn):利用導(dǎo)數(shù)研究曲線上某點(diǎn)切線方程,利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,利用導(dǎo)數(shù)研究函數(shù)的極值
專題:導(dǎo)數(shù)的概念及應(yīng)用
分析:(1)求出原函數(shù)的導(dǎo)函數(shù),得到函數(shù)在x=1時(shí)的導(dǎo)數(shù),由f′(1)=-a-1=1求得a的值;
(2)把(1)中求得的a的值代入函數(shù)解析式,求出導(dǎo)函數(shù),得到導(dǎo)函數(shù)的零點(diǎn),判斷原函數(shù)的單調(diào)性,從而求得原函數(shù)的極值點(diǎn)并求得極值.
解答: 解:(1)f′(x)=
1
x
+
a
x2
…(2分)
∵曲線y=f(x)在點(diǎn)(1,f(1))處的切線垂直于直線y=x,
∴f′(1)=a+1=-1,∴a=-2…(4分)
(2)由(Ⅰ)知f(x)=lnx+
2
x
,則f′(x)=
1
x
-
2
x2
=
x-2
x2

令f′(x)=0,解得x=2,又f(x)的定義域?yàn)椋?,+∞)…(6分)
當(dāng)x∈(0,2)時(shí),f′(x)<0∴f(x)在(0,2)內(nèi)為減函數(shù)…(8分)
當(dāng)x∈(2,+∞)時(shí),f′(x)>0∴f(x)在(2,+∞)內(nèi)為增函數(shù)…(10分)
由此知函數(shù)f(x)在x=2處取得極小值f(2)=ln2+1,無(wú)極大值.…(11分)
點(diǎn)評(píng):本題考查了利用導(dǎo)數(shù)研究過曲線上某點(diǎn)處的切線方程,過曲線上某點(diǎn)的切線的斜率,就是函數(shù)在該點(diǎn)處的導(dǎo)數(shù)值,考查了利用導(dǎo)數(shù)求函數(shù)的極值,是中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知向量
a
b
的夾角為120°,|
a
|=1,|
b
|=3,則|
a
-
b
|=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知圓O的半徑為1,過圓外一點(diǎn)P作圓O的割線與圓O交于C,D兩點(diǎn),若PC•PD=8,則線段PO的長(zhǎng)度為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知|
a
|=6,|
b
|=8,
a
b
=22,則|
a
+
b
|為(  )
A、10B、12C、72D、144

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=lnx-x2+ax.
(1)若函數(shù)f(x)在(0,1]上單調(diào)遞增,試求a的取值范圍;
(2)設(shè)函數(shù)f(x)在點(diǎn)C(x0,f(x0))(x0為非零常數(shù))處的切線為l,證明:函數(shù)f(x)圖象上的點(diǎn)都不在直線l的上方.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=a|x|(0<a<1)
(1)若|m|<2,使得函數(shù)h(x)=f(x)-m有2個(gè)不同零點(diǎn)的概率是
 
;
(2)若方程[f(x)]2+b[f(x)]+c=0有3個(gè)不同的根,則b的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=1-
a
2x+1
在R上是奇函數(shù).
(1)求a;
(2)對(duì)x∈(0,1],不等式s•f(x)≥2x-1恒成立,求實(shí)數(shù)s的取值范圍;
(3)令g(x)=
1
f(x)-1
,若關(guān)于x的方程g(2x)-mg(x+1)=0有唯一實(shí)數(shù)解,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

南昌市為增強(qiáng)市民的交通安全意識(shí),面向全市征召“小紅帽”志愿者在部分交通路口協(xié)助交警維持交通,把符合條件的1000名志愿者按年齡分組:第1組[20,25)、第2組[25,30)、第3組[30,35)、第4組[35,40)、第5組[40,45),得到的頻率分布直方圖如圖所示:
(1)若從第3、4、5組中用分層抽樣的方法抽取12名志愿者在五一節(jié)這天到廣場(chǎng)協(xié)助交警維持交通,應(yīng)從第3、4、5組各抽取多少名志愿者?
(2)在(1)的條件下,南昌市決定在這12名志愿者中隨機(jī)抽取3名志愿者到學(xué)校宣講交通安全知識(shí),若ξ表示抽出的3名志愿者中第3組的人數(shù),求ξ的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

證明f(x)=
x
在定義域?yàn)閇0,+∞)內(nèi)是增函數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案