【題目】已知函數(shù),都在處取得最小值.
(1)求的值;
(2)設函數(shù),的極值點之和落在區(qū)間,,求的值.
【答案】(1).
(2).
【解析】分析:(1)先求 ,再求 ,列式可得導函數(shù)變化規(guī)律,確定單調性,得到最小值取法,即得 ,再根據(jù)在 處取得最小值得a,最后求的值;(2)求導數(shù),再求導函數(shù)的導數(shù),根據(jù)導函數(shù)單調性以及零點存在定理得確定零點個數(shù)及其范圍,最后確定極值點之和范圍,進而得到k的值.
詳解:(1),令得,則,的變化情況如下表:
- | + | ||
極小值 |
∴當時,函數(shù)取得最小值,∴,;
當時,函數(shù)是增函數(shù),在沒有最小值,當時,,
當且僅當,即,有最小值,
∴.
(2),,設,
∵,∴當時,即單調遞減,
當時,即單調遞增,
由(1)得,∴時,,單調遞增.
時,,單調遞減,∴在有唯一極大值點;
∵,,在單調遞增,
∴在存在唯一實數(shù),使得,
∴時,,單調遞減,時,,單調遞增,
∴函數(shù)在有唯一極小值點;
∵,∴,,
∵,,
∴存在自然數(shù),使得函數(shù)的所有極值點之和.
科目:高中數(shù)學 來源: 題型:
【題目】已知命題:“,使等式成立”是真命題.
(1)求實數(shù)的取值集合;
(2)設不等式的解集為,若是的必要不充分條件,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),.
(1)若對任意實數(shù),關于的方程:總有實數(shù)解,求的取值范圍;
(2)若,求使關于的方程:有三個實數(shù)解的的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】基于移動互聯(lián)技術的共享單車被稱為“新四大發(fā)明”之一,短時間內就風靡全國,帶給人們新的出行體驗.某共享單車運營公司的市場研究人員為了解公司的經(jīng)營狀況,對該公司最近六個月內的市場占有率進行了統(tǒng)計,結果如下表:
月份 | 2017.8 | 2017.9 | 2017.10 | 2017.11 | 2017.12 | 2018.1 |
月份代碼x | 1 | 2 | 3 | 4 | 5 | 6 |
市 場占有率y(%) | 11 | 13 | 16 | 15 | 20 | 21 |
(1)請在給出的坐標紙中作出散點圖;
(2)求y關于x的線性回歸方程,并預測該公司2018年2月份的市場占有率;
參考公式:回歸直線方程為 其中:,
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某種植園在芒果臨近成熟時,隨機從一些芒果樹上摘下100個芒果,其質量(單位:克)分別在,,,,,中,經(jīng)統(tǒng)計得頻率分布直方圖如圖所示.
(1)現(xiàn)按分層抽樣從質量為,的芒果中隨機抽取6個,再從這6個中隨機抽取3個,求這3個芒果中恰有1個在內的概率;
(2)某經(jīng)銷商來收購芒果,以各組數(shù)據(jù)的中間數(shù)代表這組數(shù)據(jù)的平均值,用樣本估計總體,該種植園中還未摘下的芒果大約還有10000個,經(jīng)銷商提出如下兩種收購方案:
方案:所有芒果以10元/千克收購;
方案:對質量低于250克的芒果以2元/個收購,高于或等于250克的以3元/個收購.
通過計算確定種植園選擇哪種方案獲利更多?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】中國是世界互聯(lián)網(wǎng)服務應用最好的國家,一部智能手機就可以跑遍國內所有地方,中國市場的移動支付普及率高得驚人.一家大型超市委托某高中數(shù)學興趣小組調查該超市的顧客使用移動支付的情況,調查人員從年齡在內的顧客中,隨機抽取了人,調查他們是否使用移動支付,結果如下表:
年齡 | ||||||||
使用 | ||||||||
不使用 |
(1)為更進一步推動移動支付,超市準備對使用移動支付的每位顧客贈送個環(huán)保購物袋,若某日該超市預計有人購物,試根據(jù)上述數(shù)據(jù)估計,該超市當天應準備多少個環(huán)保購物袋?
(2)填寫下面列聯(lián)表,并根據(jù)列聯(lián)表判斷是否有的把握認為使用移動支付與年齡有關?
年齡 | 年齡 | 小計 | |
使用移動支付 | |||
不使用移動支付 | |||
合計 |
附:下面的臨界值表供參考:
參考數(shù)據(jù):
,其中.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com