【題目】已知函數(shù)
(1)若函數(shù)在點處的切線方程為,求的值;
(2)若,函數(shù)在區(qū)間內(nèi)有唯一零點,求的取值范圍;
(3)若對任意的,均有,求的取值范圍.
【答案】(1),;(2)或;(3).
【解析】
試題本題考查導數(shù)的運算,利用導數(shù)求切線方程、判斷函數(shù)的單調(diào)性、求函數(shù)的最值等基礎(chǔ)知識,考查函數(shù)思想、分類討論思想,考查綜合分析和解決問題的能力.(1)先求導,將切點的橫坐標代入到導數(shù)中,得到切線的斜率,結(jié)合已知切線的斜率可求出的值,再由切點在切線上,可求出即切點的縱坐標,然后代入的解析式即可求出的值;(2)先將代入得到解析式,求導數(shù),判斷函數(shù)的單調(diào)性,因為在有唯一的零點,所以或,所以解得或;(3)屬于恒成立問題,通過分析題意,可以轉(zhuǎn)化為在上的最大值與最小值之差,因為,所以討論的正負來判斷的正負,當時,為單調(diào)遞增函數(shù),所以,當時,需列表判斷函數(shù)的單調(diào)性和極值來決定最值的位置,這種情況中還需要討論與1的大小.
試題解析:(1),所以,得
又,所以,得
(2)因為所以,
當時,,當時,
所以在上單調(diào)遞減,在上單調(diào)遞增
又,可知在區(qū)間內(nèi)有唯一零點等價于
或
得或
(3)若對任意的,均有,等價于在上的最大值與最小值之差
(ⅰ)當時,在上,在上單調(diào)遞增
由,得
所以
(ⅱ)當時,由得
由得或
所以,同理
當,即時,,與題設(shè)矛盾
當,即時,恒成立
當,即時,恒成立
綜上所述,的取值范圍為.
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,曲線過點,其參數(shù)方程為,(為參數(shù),),以坐標原點為極點,以軸的 非負半軸為極軸建立極坐標系,曲線的極坐標方程為.
(1)求曲線的普通方程和曲線的直角坐標方程;
(2)若曲線和曲線交于兩點,且,求實數(shù)的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在第二屆烏鎮(zhèn)互聯(lián)網(wǎng)大會中,為了提高安保的級別同時又為了方便接待,現(xiàn)將其中的五個參會國的人員安排酒店住宿,這五個參會國要在、、三家酒店選擇一家,且每家酒店至少有一個參會國入住,則這樣的安排方法共有_________(填具體數(shù)字)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設(shè)橢圓的左、右焦點分別為、,上頂點為,在軸負半軸上有一點,滿足為線段的中點,且.
(1)求橢圓的離心率;
(2)若過、、三點的圓與直線相切,求橢圓的方程;
(3)在(2)的條件下,過右焦點作斜率為的直線與橢圓交于、兩點,在軸上是否存在點使得以、為鄰邊的平行四邊形是菱形?如果存在,求出的取值范圍,若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某公司生產(chǎn)一種新產(chǎn)品,從產(chǎn)品中抽取100件作為樣本,測量這些產(chǎn)品的質(zhì)量指標值,由測量結(jié)果得到如圖所示的頻率分布直方圖.
(1)用每組區(qū)間的中點值代表該組數(shù)據(jù),估算這批產(chǎn)品的樣本平均數(shù)和樣本方差的;
(2)從指標值落在的產(chǎn)品中隨機抽取2件做進一步檢測,設(shè)抽取的產(chǎn)品的指標在的件數(shù)為,求的分布列和數(shù)學期望;
(3)由頻率分布直方圖可以認為,這種產(chǎn)品的質(zhì)量指標值服從正態(tài)分布,近似為樣本平均值,近似為樣本方差,若產(chǎn)品質(zhì)量指標值大于236.6,則產(chǎn)品不合格,該廠生產(chǎn)10萬件該產(chǎn)品,求這批產(chǎn)品不合格的件數(shù).
參考數(shù)據(jù):,,,.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com