在△ABC中,角A,B,C所對應(yīng)的邊分別為a,b,c,且(2a-c)cosB=bcosC.
(Ⅰ)求角B的大。
(Ⅱ)若數(shù)學公式,求△ABC的面積.

解:(Ⅰ)因為(2a-c)cosB=bcosC,由正弦定理得(2sinA-sinC)cosB=sinBcosC. …(2分)
∴2sinAcosB=sinCcosB+sinBcosC=sin(B+C)=sinA.…(4分)
∵0<A<π,∴sinA≠0,
. 又∵0<B<π,∴. …(6分)
(Ⅱ)由正弦定理,得,…(8分)
可得,由,可得,…(11分)
. …(13分)
分析:(Ⅰ)因為(2a-c)cosB=bcosC,由正弦定理可得. 又0<B<π,從而得到角B的大。
(Ⅱ)由正弦定理,求得b的值,再由求出sinC的值,根據(jù)△ABC的面積運算求得結(jié)果.
點評:本題主要考查正弦定理,誘導(dǎo)公式的應(yīng)用,已知三角函數(shù)值求角的大小,屬于中檔題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

在△ABC中,角A、B、C所對的邊分別為a,b,c,若b2+c2-a2=
3
bc
,且b=
3
a
,則下列關(guān)系一定不成立的是( 。
A、a=c
B、b=c
C、2a=c
D、a2+b2=c2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,角A,B,C的對邊分別為a,b,c,已知B=60°,cos(B+C)=-
1114

(1)求cosC的值;
(2)若bcosC+acosB=5,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,角A,B,C的對邊分別是a,b,c,且bsinA=
3
acosB

(1)求角B的大;
(2)若a=4,c=3,D為BC的中點,求△ABC的面積及AD的長度.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,角A、B、C所對的邊分別為a、b、c并且滿足
b
a
=
sinB
cosA

(1)求∠A的值;
(2)求用角B表示
2
sinB-cosC
,并求它的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,角A,B,C所對邊的長分別為a,b,c,且a=
5
,b=3,sinC=2sinA
,則sinA=
 

查看答案和解析>>

同步練習冊答案