設(shè)函數(shù)定義域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/67/8/1dyvw4.png" style="vertical-align:middle;" />,且.
設(shè)點(diǎn)是函數(shù)圖像上的任意一點(diǎn),過點(diǎn)分別作直線和軸的垂線,垂足分別為.
(1)寫出的單調(diào)遞減區(qū)間(不必證明);(4分)
(2)問:是否為定值?若是,則求出該定值,若不是,則說明理由;(7分)
(3)設(shè)為坐標(biāo)原點(diǎn),求四邊形面積的最小值.(7分)
(1)在上是減函數(shù).(2) ;
(3)此時(shí)四邊形面積有最小值.
解析試題分析:(1)、因?yàn)楹瘮?shù)的圖象過點(diǎn),
所以 2分
函數(shù)在上是減函數(shù). 4分
(2)、(理)設(shè) 5分
直線的斜率
則的方程 6分
聯(lián)立
9分
, 11分
(3) 12分
13分
∴, 14分
, 15分
∴ , 16分
17分
當(dāng)且僅當(dāng)時(shí),等號(hào)成立.
∴此時(shí)四邊形面積有最小值. 18分
考點(diǎn):本題主要考查函數(shù)的性質(zhì),均值定理的應(yīng)用,向量的坐標(biāo)運(yùn)算。
點(diǎn)評(píng):綜合題,利用函數(shù)方程思想,得出面積表達(dá)式,進(jìn)一步運(yùn)用均值定理求面積的最小值,對(duì)數(shù)學(xué)式子變形能力要求較高。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)。
(1)若不等式對(duì)任意的實(shí)數(shù)恒成立,求實(shí)數(shù)的取值范圍;
(2)設(shè),且在上單調(diào)遞增,求實(shí)數(shù)的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)
若函數(shù)為奇函數(shù),當(dāng)時(shí),(如圖).
(Ⅰ)求函數(shù)的表達(dá)式,并補(bǔ)齊函數(shù)的圖象;
(Ⅱ)用定義證明:函數(shù)在區(qū)間上單調(diào)遞增.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題滿分12分)已知函數(shù)
(1)若的單調(diào)區(qū)間;
(2)若函數(shù)存在極值,且所有極值之和大于,求a的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(12分)已知函數(shù)
(1)若,求函數(shù)在點(diǎn)(0,)處的切線方程;
(2)是否存在實(shí)數(shù),使得的極大值為3.若存在,求出值;若不存在,說明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題滿分12分)
把邊長(zhǎng)為的等邊三角形鐵皮剪去三個(gè)相同的四邊形(如圖陰影部分)后,用剩余部分做成一個(gè)無蓋的正三棱柱形容器(不計(jì)接縫),設(shè)容器的高為,容積為.
(Ⅰ)寫出函數(shù)的解析式,并求出函數(shù)的定義域;
(Ⅱ)求當(dāng)x為多少時(shí),容器的容積最大?并求出最大容積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題滿分9分)已知函數(shù)的定義域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/8e/0/khzqd.png" style="vertical-align:middle;" />,
(1)求;
(2)當(dāng)時(shí),求函數(shù)的最大值。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com