【題目】下列命題正確的有________(填序號(hào))
①已知或,,則p是q的充分不必要條件;
②“函數(shù)的最小正周期為”是“”的必要不充分條件;
③中,內(nèi)角A,B,C所對(duì)的邊分別為a,b,c,,,則“”是“為等腰三角形”的必要不充分條件;
④若命題“函數(shù)的值域?yàn)?/span>”為真命題,則實(shí)數(shù)a的取值范圍是.
【答案】②
【解析】
根據(jù)充分、必要條件的知識(shí)判斷①②③的正確性;根據(jù)對(duì)數(shù)型函數(shù)值域?yàn)?/span>列不等式,解不等式求得的取值范圍,由此判斷④的正確性.
對(duì)于①,:時(shí),,即不能推出.所以不是的充分條件,故①錯(cuò)誤.
對(duì)于②,,,所以當(dāng)周期為時(shí),所以“函數(shù)的最小正周期為”是“”的必要不充分條件,故②正確.
對(duì)于③,當(dāng)時(shí),由正弦定理得,即,所以或,也即三角形是等腰()或直角三角形.當(dāng)為等腰三角形時(shí),可能.所以“”是“為等腰三角形”的非充分非必要條件.故③錯(cuò)誤.
對(duì)于④,由于為真命題,故函數(shù)的值域?yàn)?/span>,即,解得或,故④錯(cuò)誤.
故答案為:②
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某工廠共有男女員工500人,現(xiàn)從中抽取100位員工對(duì)他們每月完成合格產(chǎn)品的件數(shù)統(tǒng)計(jì)如下:
每月完成合格產(chǎn)品的件數(shù)(單位:百件) | |||||
頻數(shù) | 10 | 45 | 35 | 6 | 4 |
男員工人數(shù) | 7 | 23 | 18 | 1 | 1 |
(1)其中每月完成合格產(chǎn)品的件數(shù)不少于3200件的員工被評(píng)為“生產(chǎn)能手”.由以上統(tǒng)計(jì)數(shù)據(jù)填寫(xiě)下面列聯(lián)表,并判斷是否有95%的把握認(rèn)為“生產(chǎn)能手”與性別有關(guān)?
非“生產(chǎn)能手” | “生產(chǎn)能手” | 合計(jì) | |
男員工 | |||
女員工 | |||
合計(jì) |
(2)為提高員工勞動(dòng)的積極性,工廠實(shí)行累進(jìn)計(jì)件工資制:規(guī)定每月完成合格產(chǎn)品的件數(shù)在定額2600件以內(nèi)的,計(jì)件單價(jià)為1元;超出件的部分,累進(jìn)計(jì)件單價(jià)為1.2元;超出件的部分,累進(jìn)計(jì)件單價(jià)為1.3元;超出400件以上的部分,累進(jìn)計(jì)件單價(jià)為1.4元.將這4段中各段的頻率視為相應(yīng)的概率,在該廠男員工中選取1人,女員工中隨機(jī)選取2人進(jìn)行工資調(diào)查,設(shè)實(shí)得計(jì)件工資(實(shí)得計(jì)件工資=定額計(jì)件工資+超定額計(jì)件工資)不少于3100元的人數(shù)為,求的分布列和數(shù)學(xué)期望.
附:,
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】從一批蘋(píng)果中,隨機(jī)抽取50個(gè),其重量(單位:克)的頻數(shù)分布表如下:
分組(重量) | ||||
頻數(shù)(個(gè)) | 5 | 10 | 20 | 15 |
(1) 根據(jù)頻數(shù)分布表計(jì)算蘋(píng)果的重量在的頻率;
(2) 用分層抽樣的方法從重量在和的蘋(píng)果中共抽取4個(gè),其中重量在的有幾個(gè)?
(3) 在(2)中抽出的4個(gè)蘋(píng)果中,任取2個(gè),求重量在和中各有1個(gè)的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時(shí),討論的單調(diào)性;
(2)證明:當(dāng)且時(shí),只有一個(gè)零點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓方程為,和分別是橢圓的左右焦點(diǎn).
①若P是橢圓上的動(dòng)點(diǎn),延長(zhǎng)到M,使,則M的軌跡是圓;
②若是橢圓上的動(dòng)點(diǎn),則;
③以焦點(diǎn)半徑為直徑的圓必與以長(zhǎng)軸為直徑的圓內(nèi)切;
④點(diǎn)P為橢圓上任意一點(diǎn),則橢圓的焦點(diǎn)三角形的面積為
以上說(shuō)法中,正確的有( )
A.①③④B.①③C.②③④D.③④
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,矩形中,,為邊的中點(diǎn),沿將折起,點(diǎn)折至處(平面),若為線段的中點(diǎn),則在折起過(guò)程中,下列說(shuō)法錯(cuò)誤的是( )
A.始終有平面
B.不存在某個(gè)位置,使得面
C.點(diǎn)在某個(gè)球面上運(yùn)動(dòng)
D.一定存在某個(gè)位置,使得異面直線與所成角為
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)討論的單調(diào)性;
(2)若,試判斷的零點(diǎn)個(gè)數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB是圓O的直徑,點(diǎn)C是圓O上異于A,B的點(diǎn),PO垂直于圓O所在的平面,且.D為線段AC的中點(diǎn).
(1)求證:平面平面;
(2)若點(diǎn)E在線段PB上,且,求三棱錐體積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線,其中.點(diǎn)在的焦點(diǎn)的右側(cè),且到的準(zhǔn)線的距離是與距離的3倍.經(jīng)過(guò)點(diǎn)的直線與拋物線交于不同的兩點(diǎn),直線與直線交于點(diǎn),經(jīng)過(guò)點(diǎn)且與直線垂直的直線交軸于點(diǎn).
(1)求拋物線的方程和的坐標(biāo);
(2)判斷直線與直線的位置關(guān)系,并說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com