已知角α的始邊在x軸的非負(fù)半軸,頂點(diǎn)在原點(diǎn),終邊上一點(diǎn)P為(-5,12).
(1)求sinα,tanα;
(2)化簡(jiǎn)并求值:
cos(
π
2
+α)sin(-π-α)
sin(
11π
2
-α)sin(
2
+α)
考點(diǎn):任意角的三角函數(shù)的定義,運(yùn)用誘導(dǎo)公式化簡(jiǎn)求值
專題:三角函數(shù)的求值
分析:(1)由條件利用任意角的三角函數(shù)的定義,求得sinα和tanα的值.
(2)利用誘導(dǎo)公式化簡(jiǎn)可得所給式子的值.
解答: 解:(1)由題意可得x=-5,y=12,r=13,∴sinα=
y
r
=
12
13
,tanα=
y
x
=-
12
5

(2)
cos(
π
2
+α)sin(-π-α)
sin(
11π
2
-α)sin(
2
+α)
=
-sinα•[-sin(π+α)]
sin(
2
-α)sin(
π
2
+α)
=
-sin2α
-cosα•cosα
=-tan2α=
144
25
點(diǎn)評(píng):本題主要考查任意角的三角函數(shù)的定義,利用誘導(dǎo)公式化簡(jiǎn)可得所給式子的值,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

將函數(shù)y=sinx的圖象向左平移
π
3
個(gè)單位長(zhǎng)度,得到的圖象對(duì)應(yīng)的函數(shù)解析式為( 。
A、y=sin(x+
π
3
B、y=sin(x-
π
3
C、y=sin(x+
3
D、y=sin(x-
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知平面上點(diǎn)P(x°,y°)在直線l:Ax+By+C=0外,試用向量證明點(diǎn)P到l的距離為d=
|Ax°+By°+C|
A2+B2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=exu(x),
(Ⅰ)若u(x)=x2-
5
2
x+2,求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(Ⅱ)若u(x)=x2+ax-3-2a,設(shè)函數(shù)g(x)=(a2+14)ex+4.當(dāng)a>0時(shí),分別求出f(x)和g(x)在x∈[0,4]的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知等比數(shù)列{an}的公比為q=-
1
2

(1)若a3=
1
8
,求數(shù)列{an}的前n項(xiàng)和;
(2)證明:對(duì)任意k∈N+,ak,ak+2,ak+1成等差數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若直線l1,l2的傾斜角為直線y=
3
x+1的傾斜角的一半,且滿足下列條件的直線l1,l2的方程;
(1)直線l1經(jīng)過(guò)點(diǎn)(-4,1); 
(2)直線l2在y軸上的截距為-10.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
2x-1
2x+1
,試討論函數(shù)f(x)的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
ax+b
1+x2
是定義在(-1,1)上的奇函數(shù),且f(
1
2
)=
2
5

(1)求a,b的值;
(2)用定義證明f(x)在(-1,1)上是增函數(shù);
(3)已知f(t)+f(t-1)<0,求t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)復(fù)數(shù)z=(a2-7a+6)+(a2-5a-6)i,(a∈R)
(1)當(dāng)a為何值時(shí),z是實(shí)數(shù);
(2)當(dāng)a為何值時(shí),z是純虛數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案