【題目】[選修4-5:不等式選講]
設(shè)函數(shù)f(x)=|x+ |+|x﹣2m|(m>0).
(1)求證:f(x)≥8恒成立;
(2)求使得不等式f(1)>10成立的實(shí)數(shù)m的取值范圍.

【答案】
(1)證明:函數(shù)f(x)=|x+ |+|x﹣2m|(m>0),

∴f(x)=|x+ |+|x﹣2m|≥|x+ ﹣(x﹣2m)|=| +2m|= +2m≥2 =8,

當(dāng)且僅當(dāng)m=2時(shí),取等號(hào),故f(x)≥8恒成立.


(2)證明:f(1)=|1+ |+|1﹣2m|,當(dāng)m> 時(shí),f(1)=1+ ﹣(1﹣2m),不等式即 +2m>10,

化簡(jiǎn)為m2﹣5m+4>0,求得m<1,或m>4,故此時(shí)m的范圍為( ,1)∪(4,+∞).

當(dāng)0<m≤ 時(shí),f(1)=1+ +(1﹣2m)=2+ ﹣2m關(guān)于變量m單調(diào)遞減,

故當(dāng)m= 時(shí),f(1)取得最小值為17,

故不等式f(1)>10恒成立.

綜上可得,m的范圍為(0,1)∪(4,+∞).


【解析】(1)利用絕對(duì)值三角不等式、基本不等式證得f(x)≥8恒成立.(2)當(dāng)m> 時(shí),不等式即 +2m>10,即m2﹣5m+4>0,求得m的范圍.當(dāng)0<m≤ 時(shí),f(1)=1+ +(1﹣2m)=2+ ﹣2m關(guān)于變量m單調(diào)遞減,求得f(1)的最小值為17,可得不等式f(1)>10恒成立.綜合可得m的范圍.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解絕對(duì)值不等式的解法的相關(guān)知識(shí),掌握含絕對(duì)值不等式的解法:定義法、平方法、同解變形法,其同解定理有;規(guī)律:關(guān)鍵是去掉絕對(duì)值的符號(hào).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】四面體A﹣BCD中,AB=CD=10,AC=BD=2 ,AD=BC=2 ,則四面體A﹣BCD外接球的表面積為(
A.50π
B.100π
C.200π
D.300π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】執(zhí)行如圖的程序框圖,輸出S的值為(
A.ln4
B.ln5
C.ln 5﹣ln4
D.ln 4﹣ln 3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程
已知直線l過定點(diǎn)P(1,1),且傾斜角為 ,以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸的坐標(biāo)系中,曲線C的極坐標(biāo)方程為
(1)求曲線C的直角坐標(biāo)方程與直線l的參數(shù)方程;
(2)若直線l與曲線C相交于不同的兩點(diǎn)A,B,求|AB|及|PA||PB|的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2016世界特色魅力城市200強(qiáng)新鮮出爐,包括黃山市在內(nèi)的28個(gè)中國城市入選.美麗的黃山風(fēng)景和人文景觀迎來眾多賓客.現(xiàn)在很多人喜歡自助游,某調(diào)查機(jī)構(gòu)為了了解“自助游”是否與性別有關(guān),在黃山旅游節(jié)期間,隨機(jī)抽取了100人,得如下所示的列聯(lián)表:

贊成“自助游”

不贊成“自助游”

合計(jì)

男性

30

女性

10

合計(jì)

100


(1)若在100這人中,按性別分層抽取一個(gè)容量為20的樣本,女性應(yīng)抽11人,請(qǐng)將上面的列聯(lián)表補(bǔ)充完整(在答題卡上直接填寫結(jié)果,不需要寫求解過程),并據(jù)此資料能否在犯錯(cuò)誤的概率不超過0.05前提下,認(rèn)為贊成“自助游”是與性別有關(guān)系?
(2)若以抽取樣本的頻率為概率,從旅游節(jié)游客中隨機(jī)抽取3人贈(zèng)送精美紀(jì)念品,記這3人中贊成“自助游”人數(shù)為X,求X的分布列和數(shù)學(xué)期望. 附:K2=

P(K2≥k)

0.100

0.050

0.010

0.001

k

2.706

3.841

6.635

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】平面上,點(diǎn)A、C為射線PM上的兩點(diǎn),點(diǎn)B、D為射線PN上的兩點(diǎn),則有 (其中SPAB、SPCD分別為△PAB、△PCD的面積);空間中,點(diǎn)A、C為射線PM上的兩點(diǎn),點(diǎn)B、D為射線PN上的兩點(diǎn),點(diǎn)E、F為射線PL上的兩點(diǎn),則有 =(其中VPABE、VPCDF分別為四面體P﹣ABE、P﹣CDF的體積).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】[選修4-5:不等式選講]
已知x,y∈R.
(1)若x,y滿足 , ,求證:
(2)求證:x4+16y4≥2x3y+8xy3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】渝州集團(tuán)對(duì)所有員工進(jìn)行了職業(yè)技能測(cè)試從甲、乙兩部門中各任選10名員工的測(cè)試成績(jī)(單位:分)數(shù)據(jù)的莖葉圖如圖所示.
(1)若公司決定測(cè)試成績(jī)高于85分的員工獲得“職業(yè)技能好能手”稱號(hào),求從這20名員工中任選三人,其中恰有兩人獲得“職業(yè)技能好能手”的概率;
(2)公司結(jié)合這次測(cè)試成績(jī)對(duì)員工的績(jī)效獎(jiǎng)金進(jìn)行調(diào)整(績(jī)效獎(jiǎng)金方案如表),若以甲部門這10人的樣本數(shù)據(jù)來估計(jì)該部門總體數(shù)據(jù),且以頻率估計(jì)概率,從甲部門所有員工中任選3名員工,記績(jī)效獎(jiǎng)金不小于3a的人數(shù)為ξ,求ξ的分布列及數(shù)學(xué)期望.

分?jǐn)?shù)

[60,70)

[70,80)

[80,90)

[90,100]

獎(jiǎng)金

a

2a

3a

4a

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在斜三棱柱ABC﹣A′B′C′中,AC=BC=A′A=A′C,A′在底面ABC上的射影為AB的中點(diǎn)D,E為線段BC的中點(diǎn).
(1)證明:平面A′DE⊥平面BCC′B′;
(2)求二面角D﹣B′C﹣B的正弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案