【題目】已知f(x)= ,g(x)=ax3﹣x2﹣x+b(a,b∈R,a≠0),g(x)的圖象C在x=﹣ 處的切線方程是y= .
(1)若求a,b的值,并證明:當(dāng)x∈(﹣∞,2]時,g(x)的圖象C上任意一點都在切線y= 上或在其下方;
(2)求證:當(dāng)x∈(﹣∞,2]時,f(x)≥g(x).
【答案】
(1)解:g'(x)=3ax2﹣2x﹣1,
因為g(x)=ax3﹣x2﹣x+b的圖象C在 處的切線方程是 ,
所以 ,即 ,解得a=1.
因為圖象C過點 ,所以 ,解得 .
要證明:當(dāng)x∈(﹣∞,2]時,g(x)的圖象C上任意一點都在切線 上或在其下方,
只要證明:當(dāng)x∈(﹣∞,2]時, .
令 ,
,令 ,得 ,
驗證得 ,
所以x∈(﹣∞,2], 成立,
所以當(dāng)x∈(﹣∞,2]時,g(x)的圖象C上任意一點都在切線 上或在其下方
(2)解:只要證明:x∈(﹣∞,2], .
x∈(﹣∞,2],令 ,
,令 ,
當(dāng) 時,h'(x)<0,當(dāng) 時,h'(x)>0,所以 ,
所以x∈(﹣∞,2], 成立,
又由(1)得,x∈(﹣∞,2], ,
所以x∈(﹣∞,2], ,
所以x∈(﹣∞,2],f(x)≥g(x).
【解析】(1)求出函數(shù)的導(dǎo)數(shù),根據(jù) ,求出a的值,圖象C過點 ,求出b的值,問題轉(zhuǎn)化為證明當(dāng)x∈(﹣∞,2]時, ,根據(jù)函數(shù)的單調(diào)性證明即可;(2)問題轉(zhuǎn)化為證明x∈(﹣∞,2], ,構(gòu)造函數(shù)g(x),根據(jù)函數(shù)的單調(diào)性證明即可.
【考點精析】認真審題,首先需要了解函數(shù)的最大(小)值與導(dǎo)數(shù)(求函數(shù)在上的最大值與最小值的步驟:(1)求函數(shù)在內(nèi)的極值;(2)將函數(shù)的各極值與端點處的函數(shù)值,比較,其中最大的是一個最大值,最小的是最小值).
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù).
(1)函數(shù)在區(qū)間[﹣1,1]上的最小值記為,求的解析式;
(2)求(1)中的最大值;
(3)若函數(shù)在[2,4]上是單調(diào)增函數(shù),求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】定義在R上的函數(shù)f(x),滿足當(dāng)x>0時,f(x)>1,且對任意的x,y,有,.
(1)求的值;
(2)求證:對任意x,都有f(x)>0;
(3)解不等式f(32x)>4.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知f(x)為二次函數(shù),且.
(1)求f(x)的表達式;
(2)判斷函數(shù)在(0,+∞)上的單調(diào)性,并證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)關(guān)于某產(chǎn)品的明星代言費x(百萬元)和其銷售額y(百萬元),有如表的統(tǒng)計表格:
i | 1 | 2 | 3 | 4 | 5 | 合計 |
xi(百萬元) | 1.26 | 1.44 | 1.59 | 1.71 | 1.82 | 7.82 |
wi(百萬元) | 2.00 | 2.99 | 4.02 | 5.00 | 6.03 | 20.04 |
yi(百萬元) | 3.20 | 4.80 | 6.50 | 7.50 | 8.00 | 30.00 |
=1.56, =4.01, =6, xiyi=48.66, wiyi=132.62, (xi﹣ )2=0.20, (wi﹣ )2=10.14 |
其中 .
(1)在坐標系中,作出銷售額y關(guān)于廣告費x的回歸方程的散點圖,根據(jù)散點圖指出:y=a+blnx,y=c+dx3哪一個適合作銷售額y關(guān)于明星代言費x的回歸類方程(不需要說明理由);
(2)已知這種產(chǎn)品的純收益z(百萬元)與x,y有如下關(guān)系:x=0.2y﹣0.726x(x∈[1.00,2.00]),試寫出z=f(x)的函數(shù)關(guān)系式,試估計當(dāng)x取何值時,純收益z取最大值?(以上計算過程中的數(shù)據(jù)統(tǒng)一保留到小數(shù)點第2位)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知AB是⊙O的直徑,直線AF交⊙O于F(不與B重合),直線EC與⊙O相切于C,交AB于E,連接AC,且∠OAC=∠CAF,求證:
(1)AF⊥EC;
(2)若AE=5,AF=2,求AC.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】平面直角坐標系xoy中,直線l的參數(shù)方程是 (t為參數(shù)),以射線ox為極軸建立極坐標系,曲線C的極坐標方程是 +ρ2sin2θ=1.
(1)求曲線C的直角坐標方程;
(2)求直線l與曲線C相交所得的弦AB的長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】①在同一坐標系中,與的圖象關(guān)于軸對稱;
②是奇函數(shù);
③的圖象關(guān)于成中心對稱;
④的最大值為;
⑤的單調(diào)增區(qū)間:。
以上五個判斷正確有____________________(寫上所有正確判斷的序號)。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點A(0,-2),橢圓E: (a>b>0)的離心率為,F是橢圓E的右焦點,直線AF的斜率為,O為坐標原點.
(1)求E的方程;
(2)設(shè)過點A的動直線l與E相交于P,Q兩點.當(dāng)△OPQ的面積最大時,求l的方程.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com