【題目】已知實(shí)數(shù)對(duì)(x,y),設(shè)映射f:(x,y)→( , ),并定義|(x,y)|= ,若|f[f(f(x,y))]|=4,則|(x,y)|的值為(
A.4
B.8
C.16
D.32

【答案】B
【解析】解:∵映射f:(x,y)→( , ),∴|f[f(f(x,y))]|=f(f( , )=f( ),
∵定義|(x,y)|= ,若|f[f(f(x,y))]|=4,
∴|( )|=4,
=4,
=8
故選B.
【考點(diǎn)精析】掌握映射的相關(guān)定義是解答本題的根本,需要知道對(duì)于映射f:A→B來(lái)說(shuō),則應(yīng)滿(mǎn)足:(1)集合A中的每一個(gè)元素,在集合B中都有象,并且象是唯一的;(2)集合A中不同的元素,在集合B中對(duì)應(yīng)的象可以是同一個(gè);(3)不要求集合B中的每一個(gè)元素在集合A中都有原象;注意:映射是針對(duì)自然界中的所有事物而言的,而函數(shù)僅僅是針對(duì)數(shù)字來(lái)說(shuō)的.所以函數(shù)是映射,而映射不一定的函數(shù).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列說(shuō)法

①在殘差圖中,殘差點(diǎn)比較均勻地落在水平的帶狀區(qū)域內(nèi),說(shuō)明選用的模型比較合適;②用相關(guān)指數(shù)可以刻畫(huà)回歸的效果,值越小說(shuō)明模型的擬合效果越好;③比較兩個(gè)模型的擬合效果,可以比較殘差平方和大小,殘差平方和越小的模型擬合效果越好.其中說(shuō)法正確的是(  )

A. ①② B. ②③ C. ①③ D. ①②③

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

已知過(guò)點(diǎn)的直線的參數(shù)方程是為參數(shù)).以平面直角坐標(biāo)系的原點(diǎn)為極點(diǎn), 軸的正半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程式為.

)求直線的普通方程和曲線的直角坐標(biāo)方程;

)若直線與曲線交于兩點(diǎn),且,求實(shí)數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】各棱長(zhǎng)都等于4的四面ABCD中,設(shè)G為BC的中點(diǎn),E為△ACD內(nèi)的動(dòng)點(diǎn)(含邊界),且GE∥平面ABD,若 =1,則| |=

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=xlnx+ax(a∈R).
(Ⅰ)當(dāng)a=0,求f(x)的最小值;
(Ⅱ)若函數(shù)g(x)=f(x)+lnx在區(qū)間[1,+∞)上為增函數(shù),求實(shí)數(shù)a的取值范圍;
(Ⅲ)過(guò)點(diǎn)P(1,﹣3)恰好能作函數(shù)y=f(x)圖象的兩條切線,并且兩切線的傾斜角互補(bǔ),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】記max{m,n}= ,設(shè)F(x,y)=max{|x2+2y+2|,|y2﹣2x+2|},其中x,y∈R,則F(x,y)的最小值是

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=|x2﹣1|+x2﹣kx.
(1)若k=2時(shí),求出函數(shù)f(x)的單調(diào)區(qū)間及最小值;
(2)若f(x)≥0恒成立,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為提高信息在傳輸中的抗干擾能力,通常在原信息中按一定規(guī)則加入相關(guān)數(shù)據(jù)組成傳輸信息.設(shè)定原信息為 ),傳輸信息為,其中,運(yùn)算規(guī)則為:,,例如原信息為111,則傳輸信息為01111.傳輸信息在傳輸過(guò)程中受到干擾可能導(dǎo)致接收信息出錯(cuò),則下列接收信息一定有誤的是( )

A. 11010 B. 01100 C. 10111 D. 00011

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】12分)某同學(xué)參加3門(mén)課程的考試。假設(shè)該同學(xué)第一門(mén)課程取得優(yōu)秀成績(jī)的概率為,第二、第三門(mén)課程取得優(yōu)秀成績(jī)的概率分別為,(),且不同課程是否取得優(yōu)秀成績(jī)相互獨(dú)立。記ξ為該生取得優(yōu)秀成績(jī)的課程數(shù),其分布列為

ξ

0

1

2

3






(Ⅰ)求該生至少有1門(mén)課程取得優(yōu)秀成績(jī)的概率;

(Ⅱ),的值;

(Ⅲ)求數(shù)學(xué)期望ξ。

查看答案和解析>>

同步練習(xí)冊(cè)答案