【題目】在△ABC中,角A,B,C的對邊分別為a,b,c,且滿足 = .
(Ⅰ)求角A的大小;
(Ⅱ)若a=2 ,求△ABC面積的最大值.
【答案】解:(Ⅰ)∵ , 所以(2c﹣b)cosA=acosB
由正弦定理,得(2sinC﹣sinB)cosA=sinAcosB.
整理得2sinCcosA﹣sinBcosA=sinAcosB.
∴2sinCcosA=sin(A+B)=sinC.
在△ABC中,sinC≠0.
∴ , .
(Ⅱ)由余弦定理 , .
∴b2+c2﹣20=bc≥2bc﹣20
∴bc≤20,當(dāng)且僅當(dāng)b=c時取“=”.
∴三角形的面積 .
∴三角形面積的最大值為 .
【解析】(I)把條件中所給的既有角又有邊的等式利用正弦定理變化成只有角的形式,整理逆用兩角和的正弦公式,根據(jù)三角形內(nèi)角的關(guān)系,得到結(jié)果.(II)利用余弦定理寫成關(guān)于角A的表示式,整理出兩個邊的積的范圍,表示出三角形的面積,得到面積的最大值.
【考點(diǎn)精析】掌握正弦定理的定義和余弦定理的定義是解答本題的根本,需要知道正弦定理:;余弦定理:;;.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系xOy中,圓C1和C2的參數(shù)方程分別是 (φ為參數(shù))和 (φ為參數(shù)),以O(shè)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系.
(1)求圓C1和C2的極坐標(biāo)方程;
(2)射線OM:θ=a與圓C1的交點(diǎn)為O、P,與圓C2的交點(diǎn)為O、Q,求|OP||OQ|的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】正三棱柱ABC﹣A1B1C1底面△ABC的邊長為3,此三棱柱的外接球的半徑為 ,則異面直線AB1與BC1所成角的余弦值為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方體ABCD﹣A1B1C1D1中,E、F分別是線段BC、CD1的中點(diǎn).
(1)求異面直線EF與AA1所成角的大小
(2)求直線EF與平面AA1B1B所成角的大。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}中,已知a1=1,a2=a,an+1=k(an+an+2)對任意n∈N*都成立,數(shù)列{an}的前n項和為Sn .
(1)若{an}是等差數(shù)列,求k的值;
(2)若a=1,k=﹣ ,求Sn;
(3)是否存在實數(shù)k,使數(shù)列{am}是公比不為1的等比數(shù)列,且任意相鄰三項am , am+1 , am+2按某順序排列后成等差數(shù)列?若存在,求出所有k的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C: 的左右焦點(diǎn)與其短軸的一個端點(diǎn)是正三角形的三個頂點(diǎn),點(diǎn)D 在橢圓C上,直線l:y=kx+m與橢圓C相交于A、P兩點(diǎn),與x軸、y軸分別相交于點(diǎn)N和M,且PM=MN,點(diǎn)Q是點(diǎn)P關(guān)于x軸的對稱點(diǎn),QM的延長線交橢圓于點(diǎn)B,過點(diǎn)A、B分別作x軸的垂涎,垂足分別為A1、B1
(1)求橢圓C的方程;
(2)是否存在直線l,使得點(diǎn)N平分線段A1B1?若存在,求求出直線l的方程,若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,橢圓:的離心率為,y軸于橢圓相交于A、B兩點(diǎn),,C、D是橢圓上異于A、B的任意兩點(diǎn),且直線AC、BD相交于點(diǎn)M,直線AD、BC相交于點(diǎn)N.
求橢圓的方程;
求直線MN的斜率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)n≥2,n∈N* , 有序數(shù)組(a1 , a2 , …,an)經(jīng)m次變換后得到數(shù)組(bm , 1 , bm , 2 , …,bm , n),其中b1 , i=ai+ai+1 , bm , i=bm﹣1 , i+bm﹣1 , i+1(i=1,2,…,n),an+1=a1 , bm﹣1 , n+1=bm﹣1 , 1(m≥2).例如:有序數(shù)組(1,2,3)經(jīng)1次變換后得到數(shù)組(1+2,2+3,3+1),即(3,5,4);經(jīng)第2次變換后得到數(shù)組(8,9,7).
(1)若ai=i(i=1,2,…,n),求b3 , 5的值;
(2)求證:bm , i= ai+jCmj , 其中i=1,2,…,n. (注:i+j=kn+t時,k∈N* , i=1,2,…,n,則ai+j=a1)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的焦點(diǎn)與雙曲線的焦點(diǎn)重合,并且經(jīng)過點(diǎn).
(Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程;
(II) 設(shè)橢圓C短軸的上頂點(diǎn)為P,直線不經(jīng)過P點(diǎn)且與相交于、兩點(diǎn),若直線PA與直線PB的斜率的和為,判斷直線是否過定點(diǎn),若是,求出這個定點(diǎn),否則說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com