【題目】已知直線的參數(shù)方程為為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.

(1)求直線的普通方程和曲線的直角坐標(biāo)方程;

(2)設(shè)點(diǎn),直線與曲線交于兩點(diǎn),求的值.

【答案】(1)直線普通方程:,曲線直角坐標(biāo)方程:;(2).

【解析】

1)消去直線參數(shù)方程中的參數(shù)即可得到其普通方程;將曲線極坐標(biāo)方程化為,根據(jù)極坐標(biāo)和直角坐標(biāo)互化原則可得其直角坐標(biāo)方程;(2)將直線參數(shù)方程代入曲線的直角坐標(biāo)方程,根據(jù)參數(shù)的幾何意義可知,利用韋達(dá)定理求得結(jié)果.

1)由直線參數(shù)方程消去可得普通方程為:

曲線極坐標(biāo)方程可化為:

則曲線的直角坐標(biāo)方程為:,即

2)將直線參數(shù)方程代入曲線的直角坐標(biāo)方程,整理可得:

設(shè)兩點(diǎn)對(duì)應(yīng)的參數(shù)分別為:,則,

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),若方程fx)﹣m=0恰有兩個(gè)實(shí)根,則實(shí)數(shù)m的取值范圍是_____.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐P-ABCD中,AB//CD,且.

(1)證明:平面PAB⊥平面PAD;

(2)若PA=PD=AB=DC ,求二面角A-PB-C的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知雙曲線(a>0,b>0)的左頂點(diǎn)與拋物線y2=2px(p>0)的焦點(diǎn)的距離為4,且雙曲線的一條漸近線與拋物線的準(zhǔn)線的交點(diǎn)坐標(biāo)為(-2,-1),則雙曲線的焦距為(  )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的離心率為,兩焦點(diǎn)與短軸的一個(gè)端點(diǎn)的連線構(gòu)成的三角形面積為.

(Ⅰ)求橢圓C的方程;

(Ⅱ)設(shè)與圓O相切的直線l交橢圓CAB兩點(diǎn)(O為坐標(biāo)原點(diǎn)),求△AOB面積的最大值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】阿基米德(公元前287年—公元前212年),偉大的古希臘哲學(xué)家、數(shù)學(xué)家和物理學(xué)家,他死后的墓碑上刻著一個(gè)“圓柱容球”的立體幾何圖形,為紀(jì)念他發(fā)現(xiàn)“圓柱內(nèi)切球的體積是圓柱體積的,且球的表面積也是圓柱表面積的”這一完美的結(jié)論.已知某圓柱的軸截面為正方形,其表面積為,則該圓柱的內(nèi)切球體積為( )

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)處取得極值.

求實(shí)數(shù)a的值;

若關(guān)于x的方程上恰有兩個(gè)不相等的實(shí)數(shù)根,求實(shí)數(shù)b的取值范圍;

證明:參考數(shù)據(jù):

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知,則方程恰有2個(gè)不同的實(shí)根,實(shí)數(shù)取值范圍__________________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了弘揚(yáng)傳統(tǒng)文化,某市舉辦了“高中生詩詞大賽”,現(xiàn)從全市參加比賽的學(xué)生中隨機(jī)抽取人的成績進(jìn)行統(tǒng)計(jì),得到如圖所示的頻率分布直方圖,其中成績的分組區(qū)間為,.

1)求頻率分布直方圖中的值;

2)在所抽取的名學(xué)生中,用分層抽樣的方法在成績?yōu)?/span>的學(xué)生中抽取了一個(gè)容量為的樣本,再從該樣本中任意抽取人,求人的成績均在區(qū)間內(nèi)的概率;

3)若該市有名高中生參賽,根據(jù)此次統(tǒng)計(jì)結(jié)果,試估算成績?cè)趨^(qū)間內(nèi)的人數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案