【題目】給出下列命題:
①函數(shù) 是奇函數(shù);
②存在實數(shù)x,使sinx+cosx=2;
③若α,β是第一象限角且α<β,則tanα<tanβ;
是函數(shù) 的一條對稱軸;
⑤函數(shù) 的圖象關(guān)于點 成中心對稱.
其中正確命題的序號為

【答案】①④
【解析】解:①函數(shù) =﹣sin x,而y=﹣sin x是奇函數(shù),故函數(shù) 是奇函數(shù),故①正確;
②因為sinx,cosx不能同時取最大值1,所以不存在實數(shù)x使sinx+cosx=2成立,故②錯誤.
③令 α= ,β= ,則tanα= ,tanβ=tan =tan = ,tanα>tanβ,故③不成立.
④把x= 代入函數(shù)y=sin(2x+ ),得y=﹣1,為函數(shù)的最小值,故 是函數(shù) 的一條對稱軸,故④正確;
⑤因為y=sin(2x+ )圖象的對稱中心在圖象上,而點 不在圖象上,所以⑤不成立.
所以答案是:①④.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知過的動圓恒與軸相切,設(shè)切點為是該圓的直徑.

(Ⅰ)求點軌跡的方程;

(Ⅱ)當(dāng)不在y軸上時,設(shè)直線與曲線交于另一點,該曲線在處的切線與直線交于點.求證: 恒為直角三角形.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(I)討論函數(shù)的單調(diào)性,并證明當(dāng)時, ;

(Ⅱ)證明:當(dāng)時,函數(shù)有最小值,設(shè)最小值為,求函數(shù)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若函數(shù)f(x)= sin2x+2cos2x+m在區(qū)間[0, ]上的最大值為6,求常數(shù)m的值及此函數(shù)當(dāng)x∈R時的最小值,并求相應(yīng)的x的取值集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列結(jié)論正確的是

在某項測量中,測量結(jié)果服從正態(tài)分布.若內(nèi)取值的概率為0.35,則內(nèi)取值的概率為0.7;

以模型去擬合一組數(shù)據(jù)時,為了求出回歸方程,設(shè),其變換后得到線性回歸方程,則;

已知命題若函數(shù)上是增函數(shù),則的逆否命題是,則函數(shù)上是減函數(shù)是真命題;

設(shè)常數(shù),則不等式恒成立的充要條件是.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某單位有工程師6人,技術(shù)員12人,技工18人,要從這些人中取一個容量為n的樣本;如果采用系統(tǒng)抽樣和分層抽樣方法抽取,無須剔除個體;如果樣本容量增加1個,則在采用系統(tǒng)抽樣時需要在總體中先剔除一個個體,則n的值為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)= [ sin(x﹣ )].
(1)求f(x)的定義域和值域;
(2)說明f(x)的奇偶性;
(3)求f(x)的單調(diào)增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓 )的離心率為, 分別是它的左、右焦點,且存在直線,使、關(guān)于的對稱點恰好是圓 , )的一條直徑的兩個端點.

(Ⅰ)求橢圓的方程;

(Ⅱ)設(shè)直線與拋物線)相交于、兩點,射線、與橢圓分別相交于點、.試探究:是否存在數(shù)集,當(dāng)且僅當(dāng)時,總存在,使點在以線段為直徑的圓內(nèi)?若存在,求出數(shù)集;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了得到函數(shù) 的圖象,只要將y=sinx(x∈R)的圖象上所有的點(
A.向左平移 個單位長度,再把所得各點的橫坐標(biāo)縮短到原來的 倍,縱坐標(biāo)不變
B.向左平移 個單位長度,再把所得各點的橫坐標(biāo)伸長到原來的2倍,縱坐標(biāo)不變
C.向左平移 個單位長度,再把所得各點的橫坐標(biāo)縮短到原來的 倍,縱坐標(biāo)不變
D.向左平移 個單位長度,再把所得各點的橫坐標(biāo)伸長到原來的2倍,縱坐標(biāo)不變

查看答案和解析>>

同步練習(xí)冊答案