分析 (1)由a1=1,an-an+1=anan+1,n∈N*.可得$\frac{1}{{a}_{n+1}}-\frac{1}{{a}_{n}}$=1,利用等差數(shù)列的通項公式即可得出.
(2)由(1)可得:bn=S2n-Sn=$\frac{1}{n+1}$$+\frac{1}{n+2}$+…+$\frac{1}{2n}$.再利用數(shù)列的單調(diào)性即可得出.
解答 解:(1)∵a1=1,an-an+1=anan+1,n∈N*.∴$\frac{1}{{a}_{n+1}}-\frac{1}{{a}_{n}}$=1,
∴數(shù)列$\{\frac{1}{{a}_{n}}\}$是等差數(shù)列,公差為1,首項為1.
∴$\frac{1}{{a}_{n}}$=1+(n-1)=n,可得an=$\frac{1}{n}$.
(2)由(1)可得:Sn=1+$\frac{1}{2}+\frac{1}{3}$+…+$\frac{1}{n}$.
∴bn=S2n-Sn=$\frac{1}{n+1}$$+\frac{1}{n+2}$+…+$\frac{1}{2n}$.
∴bn+1-bn=$\frac{1}{n+2}+\frac{1}{n+3}$+…+$\frac{1}{2n}$+$\frac{1}{2n+1}$+$\frac{1}{2n+2}$-($\frac{1}{n+1}$$+\frac{1}{n+2}$+…+$\frac{1}{2n}$)
=$\frac{1}{2n+1}$+$\frac{1}{2n+2}$-$\frac{1}{n+1}$=$\frac{1}{2n+1}$-$\frac{1}{2n+2}$>0,
∴數(shù)列{bn}單調(diào)遞增,∴bn的最小值為b1=$\frac{1}{2}$.
點評 本題考查了等差數(shù)列的通項公式與求和公式、數(shù)列的單調(diào)性,考查了推理能力與計算能力,屬于中檔題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
編號 | 1 | 2 | 3 | 4 | 5 | 6 |
身高/cm | 170 | 168 | 178 | 168 | 176 | 172 |
體重/kg | 65 | 64 | 72 | 61 | 67 | 67 |
A. | 80 kg | B. | 71.6 kg | C. | 68.4 kg | D. | 64.8 kg |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 在(0,+∞)上是減函數(shù) | B. | 在(0,+∞)上是增函數(shù) | ||
C. | 在(1,+∞)上是減函數(shù) | D. | 在(1,+∞)上是增函數(shù) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | (1)(3)(4) | B. | (1)(2) | C. | (3)(4) | D. | (2)(3)(4) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{1}{4}$ | B. | $\frac{1}{3}$ | C. | $\frac{1}{2}$ | D. | $\frac{2}{3}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | (-∞,0] | B. | [0,+∞) | C. | [1,+∞) | D. | (-∞,1] |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com