【題目】已知函數(shù).
(1)若函數(shù)在點處切線的斜率為4,求實數(shù)的值;
(2)求函數(shù)的單調區(qū)間;
(3)若函數(shù)在上是減函數(shù),求實數(shù)的取值范圍.
【答案】(1)6;(2)單調遞減區(qū)間是,單調遞增區(qū)間是;(3)
【解析】
(1)利用導數(shù)的幾何意義得到,從而求出a的值.(2)對a分類討論,利用導數(shù)求函數(shù)的單調區(qū)間.(3)先轉化為在上恒成立,再化為在上恒成立,再求在上的最大值即得a的取值范圍.
(1),而,即,解得.
(2)函數(shù)的定義域為.
①當時,,的單調遞增區(qū)間為;
②當時,.
當變化時,的變化情況如下:
由此可知,函數(shù)的單調遞減區(qū)間是,單調遞增區(qū)間是.
(3),于是.
因為函數(shù)在上是減函數(shù),所以在上恒成立,
即在上恒成立.
又因為函數(shù)的定義域為,所以有在[上恒成立.
于是有,設,則,所以有
,,
當時,有最大值,于是要使在上恒成立,只需,
即實數(shù)的取值范圍是.
科目:高中數(shù)學 來源: 題型:
【題目】在試驗E“連續(xù)拋擲一枚骰子2次,觀察每次擲出的點數(shù)”中,事件A表示隨機事件“第一次擲出的點數(shù)為1”,事件表示隨機事件“第一次擲出的點數(shù)為1,第二次擲出的點數(shù)為j,事件B表示隨機事件“2次擲出的點數(shù)之和為6”,事件C表示隨機事件“第二次擲出的點數(shù)比第一次的大3”,
(1)試用樣本點表示事件與;
(2)試判斷事件A與B,A與C,B與C是否為互斥事件;
(3)試用事件表示隨機事件A.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知頂點是坐標原點的拋物線的焦點在軸正半軸上,圓心在直線上的圓與軸相切,且關于點對稱.
(1)求和的標準方程;
(2)過點的直線與交于,與交于,求證:.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,直線的參數(shù)方程為(為參數(shù)).在以原點為極點,軸正半軸為極軸的極坐標系中,曲線的極坐標方程為.
(1)求直線的極坐標方程和曲線的直角坐標方程;
(2)若直線與曲線交于兩點,求.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】近年來,隨著汽車消費的普及,二手車流通行業(yè)得到迅猛發(fā)展.某汽車交易市場對2017 年成交的二手車的交易前的使用時間(以下簡稱“使用時間”)進行統(tǒng)計,得到如圖1所示的頻率分布直方圖,在圖1對使用時間的分組中,將使用時間落入各組的頻率視為概率.
(1)若在該交易市場隨機選取3輛2017年成交的二手車,求恰有2輛使用年限在的概率;
(2)根據(jù)該汽車交易市場往年的數(shù)據(jù),得到圖2所示的散點圖,其中 (單位:年)表示二手車的使用時間,(單位:萬元)表示相應的二手車的平均交易價格.
①由散點圖判斷,可采用作為該交易市場二手車平均交易價格關于其使用年限的回歸方程,相關數(shù)據(jù)如下表(表中):
試選用表中數(shù)據(jù),求出關于的回歸方程;
②該汽車交易市場擬定兩個收取傭金的方案供選擇.
甲:對每輛二手車統(tǒng)—收取成交價格的的傭金;
乙:對使用8年以內(含8年)的二手車收取成交價格的的傭金,對使用時間8年以上(不含 8年)的二手車收取成交價格的的傭金.
假設采用何種收取傭金的方案不影響該交易市場的成交量,根據(jù)回歸方程和圖表1,并用,各時間組的區(qū)間中點值代表該組的各個值.判斷該汽車交易市場應選擇哪個方案能獲得更多傭金.
附注:
于一組數(shù)據(jù),其回歸直線的斜率和截距的最小二乘估計分別為,;
②參考數(shù)據(jù):,.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com