【題目】如圖,在四棱錐中,是邊長為的棱形,且分別是的中點.

(1)證明:平面;

(2)若二面角的大小為,求點到平面的距離.

【答案】(1)見解析(2)

【解析】試題分析:(1)中點,先證明平面,再證明平面平面,又,則可得平面(2)先找出為二面角的平面角,即,接下來證明平面,所以三棱錐的高為2.再求的面積,利用三棱錐的體積與三棱錐的體積相等,即求得點到平面的距離.

試題解析:

(1)證明:中點,連接

中,,所以為正角形.

中點,

因為,所以

,故平面

因為分別是的中點,所以

,所以平面平面

,故平面

(2):因為平面,所以,,

為二面角的平面角,即

因為,所以

因為,且,所以

所以,且

因為平面,所以

所以平面,所以三棱錐的高為2.

于是三棱錐的體積

中,,所以,

則在中,

, ,

所以,于是的面積

設點到平面的距離為,三棱錐的體積與三棱錐的體積相等,所以,故

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】汽車廠生產三類轎車,每類轎車均有舒適型和標準型兩種型號,某月的產量如下表(單位:輛):按類用分層抽樣的方法在這個月生產的轎車中抽取50輛,其中有A類轎車10輛.

轎車

轎車

轎車

舒適型

100

150

標準型

300

450

600

(1)求的值;

(2)用分層抽樣的方法在類轎車中抽取一個容量為5的樣本.將該樣本看成一個總體,從中任取

2輛,求至少有1輛舒適型轎車的概率;

(3)用隨機抽樣的方法從類舒適型轎車中抽取8輛,經(jīng)檢測它們的得分如下:. 把這8輛轎車的得分看成一個總體,從中任取一個數(shù),求該數(shù)與樣本平均數(shù)之差的絕對 值不超過的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】假設要抽查某企業(yè)生產的某種品牌的袋裝牛奶的質量是否達標,現(xiàn)從700袋牛奶中抽取50袋進行檢驗,利用隨機數(shù)表抽取樣本時,先將700袋牛奶按001,002,…,700進行編號,如果從隨機數(shù)表第3行第1組開始向右讀,最先讀到的5袋牛奶的編號是614,593,379,242,203,請你以此方式繼續(xù)向右讀數(shù),隨后讀出的3袋牛奶的編號是________.(下列摘取了隨機數(shù)表第1行至第5行)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù)f(x)=sin(2ωx+ )(其中ω>0),且f(x)的圖象在y軸右側的第一個最高點的橫坐標是
(1)求y=f(x)的最小正周期及對稱軸;
(2)若x∈ ,函數(shù) ﹣af(x)+1的最小值為0.求a的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某地區(qū)2010年至2016年農村居民家庭純收入(單位:千元)的數(shù)據(jù)如下表

年份

2010

2011

2012

2013

2014

2015

2016

年份代號x

1

2

3

4

5

6

7

人均純收入y

2.9

3.3

3.6

4.4

4.8

5.2

5.9

(1)求關于的線性回歸方程。

(2)判斷之間是正相關還是負相關?

(3)預測該地區(qū)2018年農村居民家庭人均純收入。

附:回歸直線的斜率和截距的最小二乘法估計公式分別為:

,

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】本小題12已知平行四邊形的三個頂點的坐標為,,

ABC中,求邊AC中線所在直線方程;

求平行四邊形的頂點D的坐標及邊BC的長度;

的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】選修4-4:坐標系與參數(shù)方程

以直角坐標系的原點O為極點, 軸的正半軸為極軸,且兩個坐標系取相等的單位長度.已知過點P(1,1)的直線的參數(shù)方程是

(I)寫出直線的極坐標方程;

(II)設與圓相交于兩點A、B,求點P到A、B兩點的距離之積

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設△ABC的內角A,B,C所對的邊分別為a,b,c,若bcosC+ccosB=asinA,則△ABC的形狀為(
A.銳角三角形
B.直角三角形
C.鈍角三角形
D.不確定

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓 經(jīng)過點,一個焦點是

(1)求橢圓的方程;

(2)若傾斜角為的直線與橢圓交于兩點,且,求直線的方程.

查看答案和解析>>

同步練習冊答案