【題目】某紡紗廠生產(chǎn)甲、乙兩種棉紗,已知生產(chǎn)甲種棉紗1噸需耗一級(jí)籽棉2噸、二級(jí)籽棉1噸;生產(chǎn)乙種棉紗1噸需耗一級(jí)籽棉1噸,二級(jí)籽棉2噸.每1噸甲種棉紗的利潤(rùn)為900元,每1噸乙種棉紗的利潤(rùn)為600元.工廠在生產(chǎn)這兩種棉紗的計(jì)劃中,要求消耗一級(jí)籽棉不超過(guò)250噸,二級(jí)籽棉不超過(guò)300噸.問(wèn)甲、乙兩種棉紗應(yīng)各生產(chǎn)多少噸,能使利潤(rùn)總額最大?并求出利潤(rùn)總額的最大值.

【答案】解:設(shè)生產(chǎn)甲、乙兩種棉紗分別為x、y噸,利潤(rùn)總額為z,
則z=900x+600y

作出以上不等式組所表示的平面區(qū)域(如圖),
即可行域.
作直線l:900x+600y=0,即3x+2y=0,
把直線l向右上方平移至過(guò)直線2x+y=250與
直線x+2y=300的交點(diǎn)位置M( , ),
此時(shí)所求利潤(rùn)總額z=900x+600y取最大值130000元.

【解析】利用線性規(guī)劃知識(shí)求解,建立約束條件,作出可行域,再根據(jù)目標(biāo)函數(shù)z=900x+600y,利用截距模型,平移直線找到最優(yōu)解,即可.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

已知曲線的參數(shù)方程為為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),以軸的正半軸為極軸建立極坐標(biāo)系,已知直線的極坐標(biāo)方程為, .

(Ⅰ)若直線與曲線交于不同的兩點(diǎn), ,當(dāng)時(shí),求的值;

(Ⅱ)當(dāng)時(shí),求曲線關(guān)于直線對(duì)稱的曲線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知{an}是等比數(shù)列,{bn}是等差數(shù)列,且a1=b1=1,a1+a2=b4 , b1+b2=a2
(1)求{an}與{bn}的通項(xiàng)公式;
(2)記數(shù)列{an+bn}的前n項(xiàng)和為Tn , 求Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在一次歌手大獎(jiǎng)賽上,七位評(píng)委為歌手打出的分?jǐn)?shù)如下:9.4,8.4,9.4,9.9,9.6,9.4,9.7,去掉一個(gè)最高分和一個(gè)最低分后,所剩數(shù)據(jù)的平均值和方差分別為(
A.9.4,0.484
B.9.4,0.016
C.9.5,0.04
D.9.5,0.016

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

1)當(dāng)時(shí),求函數(shù)的單調(diào)增區(qū)間;

2)設(shè)函數(shù), 若函數(shù)的最小值是,的值;

3若函數(shù), 的定義域都是對(duì)于函數(shù)的圖象上的任意一點(diǎn),在函數(shù)的圖象上都存在一點(diǎn),使得其中是自然對(duì)數(shù)的底數(shù), 為坐標(biāo)原點(diǎn)的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù).

(1)試討論函數(shù)的單調(diào)性;

(2)如果且關(guān)于的方程有兩解, ),證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示的幾何體中,四邊形為菱形, , ,平面平面, 的中點(diǎn), 為平面內(nèi)任一點(diǎn).

(1)在平面內(nèi),過(guò)點(diǎn)是否存在直線使?如果不存在,請(qǐng)說(shuō)明理由,如果存在,請(qǐng)說(shuō)明作法;

(2)過(guò), 三點(diǎn)的平面將幾何體截去三棱錐,求剩余幾何體的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】若直線ax﹣by+2=0(a>0,b>0)被圓x2+y2+4x﹣4y﹣1=0所截得的弦長(zhǎng)為6,則 的最小值為(
A.10
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知命題p:x∈A,且A={x|a﹣1<x<a+1},命題q:x∈B,且B={x|x2﹣4x+3≥0}
(Ⅰ)若A∩B=,A∪B=R,求實(shí)數(shù)a的值;
(Ⅱ)若p是q的充分條件,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案