【題目】某工廠(chǎng)生產(chǎn)某種產(chǎn)品,每生產(chǎn)1噸產(chǎn)品需人工費(fèi)4萬(wàn)元,每天還需固定成本3萬(wàn)元.經(jīng)過(guò)長(zhǎng)期調(diào)查統(tǒng)計(jì),每日的銷(xiāo)售額(單位:萬(wàn)元)與日產(chǎn)量(單位:噸)滿(mǎn)足函數(shù)關(guān)系,已知每天生產(chǎn)4噸時(shí)利潤(rùn)為7萬(wàn)元.
(1)求的值;
(2)當(dāng)日產(chǎn)量為多少?lài)崟r(shí),每天的利潤(rùn)最大,最大利潤(rùn)為多少?
【答案】(1)18;(2)當(dāng)日產(chǎn)量為7噸時(shí)利潤(rùn)最大,最大利潤(rùn)為10萬(wàn)元
【解析】分析:(1)由題意,每天的成本 每天的利潤(rùn),將時(shí),代入解析式,可得的值;(2)由(1)知:利潤(rùn),分別求得與的最大值,從而可得結(jié)果.
詳解:(1)由題意,每天的成本
每天的利潤(rùn)
∵時(shí),
∴,∴
(2)由(1)知:利潤(rùn)
當(dāng)時(shí),=
=
∵
∴
∴=10
當(dāng)且僅當(dāng),即時(shí)取得最大值.
當(dāng)時(shí),為減函數(shù),
∴當(dāng)時(shí),<10
綜上所述,當(dāng)日產(chǎn)量為7噸時(shí)利潤(rùn)最大,最大利潤(rùn)為10萬(wàn)元.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓 的有 條弦,且任意兩條弦都彼此相交,任意三條弦不共點(diǎn),這 條弦將圓 分成了 個(gè)區(qū)域,(例如:如圖所示,圓 的一條弦將圓 分成了2(即 )個(gè)區(qū)域,圓 的兩條弦將圓 分成了4(即 )個(gè)區(qū)域,圓 的3條弦將圓 分成了7(即 )個(gè)區(qū)域),以此類(lèi)推,那么 與 之間的遞推式關(guān)系為: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓 的一個(gè)頂點(diǎn)為A(2,0),離心率為 .直線(xiàn)y=k(x-1)與橢圓C交于不同的兩點(diǎn)M、N.
(1)求橢圓C的方程.
(2)當(dāng)△AMN的面積為 時(shí),求k的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】共享單車(chē)是指由企業(yè)在校園、公交站點(diǎn)、商業(yè)區(qū)、公共服務(wù)區(qū)等場(chǎng)所提供的自行車(chē)單車(chē)共享服務(wù),由于其依托“互聯(lián)網(wǎng)+”,符合“低碳出行”的理念,已越來(lái)越多地引起了人們的關(guān)注.某部門(mén)為了對(duì)該城市共享單車(chē)加強(qiáng)監(jiān)管,隨機(jī)選取了100人就該城市共享單車(chē)的推行情況進(jìn)行問(wèn)卷調(diào)查,并將問(wèn)卷中的這100人根據(jù)其滿(mǎn)意度評(píng)分值(百分制)按照[50,60),[60,70),…,[90,100]分成5組,制成如圖所示頻率分直方圖.
(Ⅰ) 求圖中x的值;
(Ⅱ) 已知滿(mǎn)意度評(píng)分值在[90,100]內(nèi)的男生數(shù)與女生數(shù)的比為2:1,若在滿(mǎn)意度評(píng)分值為[90,100]的人中隨機(jī)抽取4人進(jìn)行座談,設(shè)其中的女生人數(shù)為隨機(jī)變量X,求X的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在三棱柱ABC﹣A1B1C1中,底面△ABC是等邊三角形,側(cè)面AA1B1B為正方形,且AA1⊥平面ABC,D為線(xiàn)段AB上的一點(diǎn).
(Ⅰ) 若BC1∥平面A1CD,確定D的位置,并說(shuō)明理由;
(Ⅱ) 在(Ⅰ)的條件下,求二面角A1D﹣C﹣BC1的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】正三角形的邊長(zhǎng)為2,將它沿高翻折,使點(diǎn)與點(diǎn)間的距離為,此時(shí)四面體外接球表面積為__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,已知任意角以坐標(biāo)原點(diǎn)為頂點(diǎn),軸的非負(fù)半軸為始邊,若終邊經(jīng)過(guò)點(diǎn),且,定義:,稱(chēng)“”為“正余弦函數(shù)”,對(duì)于“正余弦函數(shù)”,有同學(xué)得到以下性質(zhì):
①該函數(shù)的值域?yàn)?/span>; ②該函數(shù)的圖象關(guān)于原點(diǎn)對(duì)稱(chēng);
③該函數(shù)的圖象關(guān)于直線(xiàn)對(duì)稱(chēng); ④該函數(shù)為周期函數(shù),且最小正周期為;
⑤該函數(shù)的遞增區(qū)間為.
其中正確的是__________.(填上所有正確性質(zhì)的序號(hào))
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中, , , (O是坐標(biāo)原點(diǎn)),其中 。
(1)求B點(diǎn)坐標(biāo);
(2)求四邊形OABC在第一象限部分面積 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若函數(shù)的圖象的相鄰兩條對(duì)稱(chēng)軸之間的距離為,,則下列說(shuō)法正確的是__________.(寫(xiě)出所有正確結(jié)論的序號(hào))
①是偶函數(shù);
②函數(shù)的圖象關(guān)于點(diǎn)對(duì)稱(chēng);
③函數(shù)在上單調(diào)遞增;
④將函數(shù)的圖象向右平移個(gè)單位長(zhǎng)度,可得函數(shù)的圖象;
⑤的對(duì)稱(chēng)軸方程為.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com