設(shè)F1,F(xiàn)2分別是橢圓
x2
a2
+
y2
b2
=1(a>b>0)
的左右焦點,若在其右準(zhǔn)線上存在點P,使△PF1F2為等腰三角形,則橢圓的離心率的取值范圍是( 。
A、(0,
3
3
)
B、(0,
2
2
)
C、(
3
3
,1)
D、(
2
2
,1)
考點:橢圓的簡單性質(zhì)
專題:綜合題,圓錐曲線的定義、性質(zhì)與方程
分析:由已知P(
a2
c
,y),可得F1P的中點Q的坐標(biāo),求出斜率,利用kF1P•kQF2=-1,可得y2=2b2-
b4
c2
,由此可得結(jié)論.
解答: 解:由已知P(
a2
c
,y),所以F1P的中點Q的坐標(biāo)為(
b2
2c
,
y
2
),
由kF1P=
cy
b2
,kQF2=
cy
b2-2c2
,
∵kF1P•kQF2=-1,∴y2=2b2-
b4
c2

∴y2=(a2-c2)(3-
1
e2
)>0
∴3-
1
e2
>0,
∵0<e<1,
3
3
<e<1.
故選C.
點評:本題考查橢圓的離心率的計算,考查學(xué)生分析解決問題的能力,確定F1P的中點Q的坐標(biāo)是關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=xlnx;
(Ⅰ)函數(shù)g(x)=-ax+f(x)在區(qū)間[1,e2]上不單調(diào),求a的取值范圍;
(Ⅱ)若k∈Z,且f(x)+x-k(x-1)>0對任意x>1恒成立,求k的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知log
1
2
(x+y+4)<log
1
2
(3x+y-2),若x-y<λ恒成立,則λ的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)f(x)=x3+x(x∈R)當(dāng)0≤θ<
π
2
時f(msinθ)+f(1-m)≥0恒成立,則m的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若方程(
x2
4-k
)+y2=k表示橢圓,則k的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知公比為q的等比數(shù)列{an}的前n項和為Sn,n∈N*,則下列結(jié)論中:
(1)Sn,S2n-Sn,S3n-S2n成等比數(shù)列;
(2)(S2n-Sn)2=Sn(S3n-S2n);
(3)S3n-S2n=qn(S2n-Sn)
正確的結(jié)論為(  )
A、(1)(2)
B、(1)(3)
C、(2)(3)
D、(1)(2)(3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a,b都是正實數(shù),且滿足log4(2a+b)=log2
ab
,則2a+b的最小值為( 。
A、12B、10C、8D、6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)a為實數(shù),函數(shù)f(x)=x2+|x-a|-1,x∈R
(1)討論f(x)的奇偶性;
(2)求f(x)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x2-2ax-(2a+2)
(Ⅰ)解關(guān)于x的不等式f(x)>x;
(Ⅱ)若f(x)+3≥0在區(qū)間(-1,+∞)上恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案