【題目】在多面體中, 平面,,四邊形是邊長(zhǎng)為的菱形.

(1)證明:

(2)線(xiàn)段上是否存在點(diǎn),使平面,若存在,求的值;若不存在,請(qǐng)說(shuō)明理由.

【答案】(1)見(jiàn)解析(2)見(jiàn)解析

【解析】分析:(1)證明線(xiàn)線(xiàn)垂直,需要通過(guò)線(xiàn)面垂直轉(zhuǎn)化。即想要證明,需要證明BD⊥平面ACF;而證明線(xiàn)面垂直,需要證明BD⊥AF,BD⊥AC,根據(jù)條件可知易證。

(2)存在性證明,可先假設(shè)存在,再去證明假設(shè)的正確性。利用相似,可以得到BMBD的關(guān)系,根據(jù)平行和EC、DC的值可以求出MN=3,從而證明出為平行四邊形,最后得到平面的結(jié)論。

詳解(1)證明:連接,由平面,得平面,

平面所以,

由四邊形是菱形,得,

,平面所以平面,

因?yàn)?/span>平面,所以.

(2)解:存在這樣的點(diǎn).證明如下:

連接,過(guò),連接.

因?yàn)?/span>,且,所以.

因?yàn)?/span>所以,即.

因?yàn)?/span>平面,,所以,所以.

因?yàn)?/span>,,所以.

于是,所以四邊形為平行四邊形,

于是,即,

平面,平面,所以平面.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,橢圓經(jīng)過(guò)點(diǎn),且點(diǎn)到橢圓的兩焦點(diǎn)的距離之和為.

(l)求橢圓的標(biāo)準(zhǔn)方程;

(2)若是橢圓上的兩個(gè)點(diǎn),線(xiàn)段的中垂線(xiàn)的斜率為且直線(xiàn)交于點(diǎn),為坐標(biāo)原點(diǎn),求證:三點(diǎn)共線(xiàn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,△ABC內(nèi)接于圓O,D是 的中點(diǎn),∠BAC的平分線(xiàn)分別交BC和圓O于點(diǎn)E,F(xiàn). (Ⅰ)求證:BF是△ABE外接圓的切線(xiàn);
(Ⅱ)若AB=3,AC=2,求DB2﹣DA2的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)△ABC的內(nèi)角A,B,C所對(duì)邊分別為a,b,c,且a+c=6,b=2,cosB=
(1)求a,c的值;
(2)求sin(A﹣B)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某工廠(chǎng)2016年計(jì)劃生產(chǎn)A、B兩種不同產(chǎn)品,產(chǎn)品總數(shù)不超過(guò)300件,生產(chǎn)產(chǎn)品的總費(fèi)用不超過(guò)9萬(wàn)元.A、B兩個(gè)產(chǎn)品的生產(chǎn)成本分別為每件500元和每件200元,假定該工廠(chǎng)生產(chǎn)的A、B兩種產(chǎn)品都能銷(xiāo)售出去,A、B兩種產(chǎn)品每件能給公司帶來(lái)的收益分別為0.3萬(wàn)元和0.2萬(wàn)元.問(wèn)該工廠(chǎng)如何分配A、B兩種產(chǎn)品的生產(chǎn)數(shù)量,才能使工廠(chǎng)的收益最大?最大收益是多少萬(wàn)元?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的左、右焦點(diǎn)分別為,點(diǎn)也為拋物線(xiàn)的焦點(diǎn).(1)若為橢圓上兩點(diǎn),且線(xiàn)段的中點(diǎn)為,求直線(xiàn)的斜率;

(2)若過(guò)橢圓的右焦點(diǎn)作兩條互相垂直的直線(xiàn)分別交橢圓于,設(shè)線(xiàn)段的長(zhǎng)分別為,證明是定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】建造一間地面面積為12的背面靠墻的豬圈, 底面為長(zhǎng)方形的豬圈正面的造價(jià)為120/, 側(cè)面的造價(jià)為80/, 屋頂造價(jià)為1120. 如果墻高3, 且不計(jì)豬圈背面的費(fèi)用, 問(wèn)怎樣設(shè)計(jì)能使豬圈的總造價(jià)最低, 最低總造價(jià)是多少元?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】我校高二年級(jí)共2000名學(xué)生,其中男生1200人.為調(diào)查學(xué)生們的手機(jī)使用情況,采用分層抽樣的方法,隨機(jī)抽取100位學(xué)生每周平均使用手機(jī)上網(wǎng)時(shí)間的樣本數(shù)據(jù)(單位:小時(shí)).根據(jù)這100個(gè)數(shù)據(jù),得到學(xué)生每周平均使用手機(jī)上網(wǎng)時(shí)間的頻率分布直方圖(如圖所示),其中樣本數(shù)據(jù)分組區(qū)間分別為.

(1)應(yīng)收集男生、女生樣本數(shù)據(jù)各多少人?

(2)估計(jì)我校高二年級(jí)學(xué)生每周平均使用手機(jī)上網(wǎng)時(shí)間超過(guò)4小時(shí)的概率.

(3)將平均每周使用手機(jī)上網(wǎng)時(shí)間在內(nèi)定義為“長(zhǎng)時(shí)間使用手機(jī)”,在內(nèi)定義為“短時(shí)間使用手機(jī)”.在樣本數(shù)據(jù)中,有25名學(xué)生不近視.請(qǐng)完成下列2×2列聯(lián)表,并判斷是否有99.5%的把握認(rèn)為“學(xué)生每周使用手機(jī)上網(wǎng)時(shí)間與近視程度有關(guān)”.

近視

不近視

合計(jì)

長(zhǎng)時(shí)間使用手機(jī)上網(wǎng)

短時(shí)間使用手機(jī)上網(wǎng)

15

合計(jì)

25

附:

0.100

0.050

0.010

0.005

2.706

3.841

6.635

7.879

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】隨著移動(dòng)互聯(lián)網(wǎng)的快速發(fā)展,基于互聯(lián)網(wǎng)的共享單車(chē)應(yīng)運(yùn)而生.某共享單車(chē)運(yùn)營(yíng)公司為進(jìn)一步擴(kuò)大市場(chǎng),公司擬再采購(gòu)一批單車(chē).現(xiàn)有采購(gòu)成本分別為元/輛和元/輛的、兩款車(chē)型可供選擇,按規(guī)定每輛單車(chē)最多使用年,但由于多種原因(如騎行頻率等)會(huì)導(dǎo)致車(chē)輛報(bào)廢年限各不相同.考慮到公司運(yùn)營(yíng)的經(jīng)濟(jì)效益,該公司決定先對(duì)兩款車(chē)型的單車(chē)各輛進(jìn)行科學(xué)模擬測(cè)試,得到兩款單車(chē)使用壽命頻數(shù)表見(jiàn)下表.

經(jīng)測(cè)算,平均每輛單車(chē)每年可以帶來(lái)收入元.不考慮除采購(gòu)成本之外的其他成本,假設(shè)每輛單車(chē)的使用壽命都是整年.

(1)分別估計(jì)、兩款車(chē)型使用壽命不低于年的概率;

(2)如果你是公司的負(fù)責(zé)人,以參加科學(xué)模擬測(cè)試的兩款車(chē)型各輛單車(chē)產(chǎn)生利潤(rùn)的平均數(shù)為決策依據(jù),你會(huì)選擇采購(gòu)哪款車(chē)型?

查看答案和解析>>

同步練習(xí)冊(cè)答案