【題目】已知函數(shù)
(1)求函數(shù) 的值域;
(2)若 時,函數(shù) 的最小值為-7,求a的值和函數(shù) 的最大值。

【答案】
(1)解:設
上是減函數(shù)
, 所以值域為
(2)解:①當 時,
所以 上是減函數(shù),
或a=-4(不合題意舍去)
時y有最大值,

②當 時, 在上 是減函數(shù),
(不合題意舍去)
(舍去)
時y有最大值,即
綜上, ,當 時f(x)的最大值為 ;
時f(x)的最大值為
【解析】(1)利用換元法,求出函數(shù)的值域,注意t的范圍。
(2)利用換元法,得到函數(shù),對a分情況討論,根據(jù)二次函數(shù)在閉區(qū)間上的單調(diào)性,利用函數(shù)的最小值,列出關于a的方程,解出a的值,求得函數(shù)的最大值。

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】曲線y=1+ 與直線y=k(x-2)+4有兩個交點,則實數(shù)k的取值范圍是( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)= sin2x﹣cos2x+1,下列結論中錯誤的是(
A.f(x)的圖象關于( ,1)中心對稱
B.f(x)在( , )上單調(diào)遞減
C.f(x)的圖象關于x= 對稱
D.f(x)的最大值為3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=3x的定義域為R,滿足f(a+2)=18,函數(shù)g(x)=λ3ax﹣4x的定義域為[0,1].
(1)求實數(shù)a的值;
(2)若函數(shù)g(x)為定義域上單調(diào)減函數(shù),求實數(shù)λ的取值范圍;
(3)λ為何值時,函數(shù)g(x)的最大值為

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在這個正方體中,

平行;
是異面直線;
是異面直線;
是異面直線;
以上四個命題中,正確命題的序號是

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標平面內(nèi),以坐標原點O為極點,x軸的正半軸為極軸建立極坐標系,曲線C的極坐標方程是ρ=4sinθ,直線l的參數(shù)方程是 (t為參數(shù)).
(1)求直線l的普通方程和曲線C的直角坐標方程;
(2)求曲線C上的點到直線l的距離的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知拋物線x2=4y焦點為F,點A,B,C為該拋物線上不同的三點,且滿足 + + =
(1)求|FA|+|FB|+|FC|;
(2)若直線AB交y軸于點D(0,b),求實數(shù)b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】當今信息時代,眾多高中生也配上了手機.某校為研究經(jīng)常使用手機是否對學習成績有影響,隨機抽取高三年級50名理科生的一次數(shù)學周練成績,并制成下面的2×2列聯(lián)表:

及格

不及格

合計

很少使用手機

20

6

26

經(jīng)常使用手機

10

14

24

合計

30

20

50


(1)判斷是否有97.5%的把握認為經(jīng)常使用手機對學習成績有影響?
(2)從這50人中,選取一名很少使用手機的同學記為甲和一名經(jīng)常使用手機的同學記為乙,解一道數(shù)學題,甲、乙獨立解出此題的概率分別為P1 , P2 , 且P2=0.5,若|P1﹣P2|≥0.4,則此二人適合結為學習上互幫互助的“學習師徒”,記X為兩人中解出此題的人數(shù),若X的數(shù)學期望E(X)=1.4,問兩人是否適合結為“學習師徒”? 參考公式及數(shù)據(jù): ,其中n=a+b+c+d.

P(K2≥K0

0.10

0.05

0.025

0.010

K0

2.706

3.841

5.024

6.635

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在四棱錐P﹣ABCD中,底面ABCD是邊長為1的正方形,PA⊥平面ABCD,PA=AB,M,N分別為PB,AC的中點,
(1)求證:MN∥平面PAD;
(2)求點B到平面AMN的距離.

查看答案和解析>>

同步練習冊答案