【題目】設f(x)是定義在R上的奇函數(shù),且對任意a、b∈R,當a+b≠0時,都有 .
(1)若a>b,試比較f(a)與f(b)的大小關(guān)系;
(2)若f(1+m)+f(3-2m)≥0,求實數(shù)m的取值范圍.

【答案】
(1)解:∵a>b,∴a-b>0,
,∴ ,∴ f(a)+f(-b)>0.
又∵f(x)是定義在R上的奇函數(shù),
∴f(-b)=-f(b),
∴f(a)-f(b)>0,即f(a)>f(b)
(2)解:由(1)可知f(x)為R上的單調(diào)遞增函數(shù),
∵f(1+m)+f(3-2m)≥0,
∴f(1+m)≥-f(3-2m),即f(1+m)≥f(2m-3),
∴1+m≥2m-3,∴m≤4.
∴實數(shù)m的取值范圍為(-∞,4]
【解析】(1)將條件不等式結(jié)合奇偶性轉(zhuǎn)化為函數(shù)的單調(diào)性求解;
(2)將函數(shù)不等式結(jié)合奇偶性進行轉(zhuǎn)化,由單調(diào)性脫去f得關(guān)于m的不等式求解.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,以坐標原點為極點,x軸的非負半軸為極軸建立極坐標系,已知點A的極坐標為( , ),直線l的極坐標方程為ρcos(θ﹣ )=a,且點A在直線l上,
(1)求a的值及直線l的直角坐標方程;
(2)圓C的參數(shù)方程為 (α為參數(shù)),試判斷直線l與圓C的位置關(guān)系.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖, 為正方體,下面結(jié)論:① 平面 ;② ;③ 平面 .其中正確結(jié)論的個數(shù)是( )

A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù)f(x)=ax2+bx+c(a,b,c∈R),若函數(shù)y=f(x)ex在x=﹣1處取得極值,則下列圖象不可能為y=f(x)的圖象是(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為弘揚民族古典文化,市電視臺舉行古詩詞知識競賽,某輪比賽由節(jié)目主持人隨機從題庫中抽取題目讓選手搶答,回答正確將給該選手記正10分,否則記負10分.根據(jù)以往統(tǒng)計,某參賽選手能答對每一個問題的概率均為 ;現(xiàn)記“該選手在回答完n個問題后的總得分為Sn”.
(1)求S6=20且Si≥0(i=1,2,3)的概率;
(2)記X=|S5|,求X的分布列,并計算數(shù)學期望E(X).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知命題p:方程x2+ax+2a=0有解;命題q:函數(shù)f(x)= 在R上是單調(diào)函數(shù).
(1)當命題q為真命題時,求實數(shù)a的取值范圍;
(2)當p為假命題,q為真命題時,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=ex+ (a∈R)是定義域為R的奇函數(shù),其中e是自然對數(shù)的底數(shù).
(1)求實數(shù)a的值;
(2)若存在x∈(0,+∞),使不等式f(x2+x)+f(2﹣tx)<0成立,求實數(shù)t的取值范圍;
(3)若函數(shù)y=e2x+ ﹣2mf(x)在(m,+∞)上不存在最值,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】現(xiàn)有2名男生和3名女生. (Ⅰ)若其中2名男生必須相鄰排在一起,則這5人站成一排,共有多少種不同的排法?
(Ⅱ)若男生甲既不能站排頭,也不能站排尾,這5人站成一排,共有多少種不同的排法?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,以坐標原點為極點,x軸的非負半軸為極軸建立極坐標系,已知點A的極坐標為( ),直線l的極坐標方程為ρcos(θ﹣ )=a,且點A在直線l上,
(1)求a的值及直線l的直角坐標方程;
(2)圓C的參數(shù)方程為 (α為參數(shù)),試判斷直線l與圓C的位置關(guān)系.

查看答案和解析>>

同步練習冊答案