【題目】已知.
(1)試求在上的最大值;
(2)已知在處的切線與軸平行,若存在,,使得,證明:.
【答案】(1)當(dāng)時(shí);當(dāng)時(shí);(2)證明見解析.
【解析】
(1)先求導(dǎo)數(shù),然后對(duì)分類討論,判斷單調(diào)性,求解即可.
(2)由題意可知,,則,從而確定單調(diào)性,再根據(jù)的正負(fù),確定其函數(shù)的大致圖像,從而確定有,要證,只需證,只需證明,只需證,構(gòu)造函數(shù),利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,證明不等式,即可.
(1),
當(dāng)時(shí),則對(duì)任意恒成立,即恒成立.
所以在單調(diào)遞增.
則的最大值為;
當(dāng)時(shí),令,即
當(dāng),即時(shí),
當(dāng)時(shí),在上單調(diào)遞增.
當(dāng)時(shí),在上單調(diào)遞減,.
當(dāng)即時(shí),對(duì)任意恒成立,
即恒成立,所以在單調(diào)遞增.
則的最大值為;
綜上所述:當(dāng)時(shí);
當(dāng)時(shí).
(2)因?yàn)?/span>在處的切線與軸平行,
所以,則,即.
當(dāng)時(shí),,則在上單調(diào)遞增,
當(dāng)時(shí),,則在上單調(diào)遞減.
又因?yàn)?/span>時(shí)有;時(shí)有,
根據(jù)圖象可知,若,則有;
要證,只需證;
又因?yàn)?/span>,所以;
因?yàn)?/span>在上單調(diào)遞減,從而只需證明,
只需證
只需證
設(shè),則.
由的單調(diào)性可知,.
則,即.
所以,即在上單調(diào)遞增.
所以.
從而不等式得證.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)f(x),若關(guān)于x的方程f2(x)﹣af(x)+a﹣a2=0有四個(gè)不等的實(shí)數(shù)根,則a的取值范圍是( )
A.B.(﹣∞,﹣1)∪[1,+∞)
C.(﹣∞,﹣1)∪{1}D.(﹣1,0)∪{1}
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在國家“大眾創(chuàng)業(yè),萬眾創(chuàng)新”戰(zhàn)略下,某企業(yè)決定加大對(duì)某種產(chǎn)品的研發(fā)投入.為了對(duì)新研發(fā)的產(chǎn)品進(jìn)行合理定價(jià),將該產(chǎn)品按事先擬定的價(jià)格試銷,得到一組檢測數(shù)據(jù)如表所示:
試銷價(jià)格(元) | ||||||
產(chǎn)品銷量 (件) |
已知變量且有線性負(fù)相關(guān)關(guān)系,現(xiàn)有甲、乙、丙三位同學(xué)通過計(jì)算求得回歸直線方程分別為:甲;丙,其中有且僅有一位同學(xué)的計(jì)算結(jié)果是正確的.
(1)試判斷誰的計(jì)算結(jié)果正確?
(2)若由線性回歸方程得到的估計(jì)數(shù)據(jù)與檢測數(shù)據(jù)的誤差不超過,則稱該檢測數(shù)據(jù)是“理想數(shù)據(jù)”,現(xiàn)從檢測數(shù)據(jù)中隨機(jī)抽取個(gè),求“理想數(shù)據(jù)”的個(gè)數(shù)的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),、、都有,滿足的實(shí)數(shù)有且只有3個(gè),給出下述四個(gè)結(jié)論:①滿足題目條件的實(shí)數(shù)有且只有2個(gè):②滿足題目條件的實(shí)數(shù)有且只有2個(gè);③在上單調(diào)遞增;④的取值范圍是.其中所有正確的個(gè)數(shù)是( )
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知F1、F2是橢圓的左、右焦點(diǎn),A是橢圓上位于第一象限內(nèi)的一點(diǎn),點(diǎn)B也在橢圓上,且滿足(O是坐標(biāo)原點(diǎn)),若橢圓的離心率等于
(1)求直線AB的方程;
(2)若三角形ABF2的面積等于,求橢圓的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐的底面為直角梯形,,,,底面,且,為的中點(diǎn).
(1)證明:;
(2)設(shè)點(diǎn)是線段上的動(dòng)點(diǎn),當(dāng)直線與直線所成的角最小時(shí),求三棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知正方形的邊長為2, 是的中點(diǎn),以點(diǎn)為圓心, 長為半徑作圓,點(diǎn)是該圓上的任一點(diǎn),則的取值范圍是( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程選講
在平面直角坐標(biāo)系中,以原點(diǎn)為極點(diǎn),以軸非負(fù)半軸為極軸建立極坐標(biāo)系, 已知曲線的極坐標(biāo)方程為,直線的極坐標(biāo)方程為.
(Ⅰ)寫出曲線和直線的直角坐標(biāo)方程;
(Ⅱ)設(shè)直線過點(diǎn)與曲線交于不同兩點(diǎn),的中點(diǎn)為,與的交點(diǎn)為,求.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com