如圖給出了計(jì)算
1
2
+
1
4
+
1
6
+…+
1
60
的值的程序框圖,其中①②分別是( 。
A、i<30,n=n+2
B、i=30,n=n+2
C、i>30,n=n+2
D、i>30,n=n+1
考點(diǎn):程序框圖
專題:算法和程序框圖
分析:根據(jù)算法的功能確定循環(huán)的次數(shù),從而確定跳出循環(huán)的i值,由此可得判斷框內(nèi)①應(yīng)填的條件;再根據(jù)n值的變化規(guī)律得執(zhí)行框②應(yīng)填的內(nèi)容.
解答: 解:∵算法的功能是計(jì)算
1
2
+
1
4
+
1
6
+…+
1
60
的值,
∴循環(huán)體循環(huán)的次數(shù)為30,∴跳出循環(huán)的i值為31,
∴判斷框內(nèi)①應(yīng)填的條件為i≥31或i>30;
根據(jù)n值的變化規(guī)律得執(zhí)行框②應(yīng)填n=n+2,
故選:C.
點(diǎn)評(píng):本題考查了循環(huán)結(jié)構(gòu)的程序框圖,根據(jù)算法的功能確定循環(huán)的次數(shù)是解答本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

某大學(xué)的8名同學(xué)準(zhǔn)備拼車去旅游,其中大一、大二、大三、大四每個(gè)年級(jí)各兩名,分乘甲、乙兩輛汽車.每車限坐4名同學(xué)(乘同一輛車的4名同學(xué)不考慮位置),其中大一的孿生姐妹需乘同一輛車,則乘坐甲車的4名同學(xué)中恰有2名同學(xué)是來自于同一年級(jí)的乘坐方式共有
 
種.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)等差數(shù)列{an}的前n項(xiàng)和為Sn,若a2+a4+a9=24,則S9=( 。
A、36B、72C、144D、70

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

i2014=( 。
A、-1B、1C、-iD、i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x2+f′(2)(lnx-x),則f′(1)=( 。
A、1B、2C、3D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=alnx-b(x-1)對(duì)任意的x>0恒有f(x)≤0成立,
(1)求正數(shù)a與b的關(guān)系;
(2)若a=1,設(shè)g(x)=m
x
+n
(m,n∈R),若lnx≤g(x)≤b(x-1)對(duì)任意x>0恒成立,求函數(shù)g(x)的解析式;
(3)證明:n。緀 2n-4
n
(n∈N,n≥2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的左右焦點(diǎn)分別為F1,F(xiàn)2,點(diǎn)B(0,
3
)為短軸的一個(gè)端點(diǎn),∠OF2B=60°.
(Ⅰ)求橢圓C的方程;
(Ⅱ)如圖,過右焦點(diǎn)F2,且斜率為k(k≠0)的直線l與橢圓C相交于E、F兩點(diǎn),A為橢圓的右頂點(diǎn),直線AE、AF分別交直線x=3于點(diǎn)M、N,線段MN的中點(diǎn)為P,記直線PF2的斜率為k′.求證:k•k′為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓心為C的圓經(jīng)過點(diǎn)A(-1,1)和B(-2,-2),且圓心在直線l:x+y-1=0上.
(1)求圓心為C的圓的標(biāo)準(zhǔn)方程;
(2)若直線kx-y+5=0被圓C所截得的弦長(zhǎng)為8,求k的值;
(3)設(shè)點(diǎn)P在圓C上,點(diǎn)Q在直線l:x-y+5=0上,求|PQ|的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)是R上的可導(dǎo)函數(shù),且f′(1)=2,則
lim
h→0
f(1+h)-f(1)
h
=
 

查看答案和解析>>

同步練習(xí)冊(cè)答案