直線y=x+2與雙曲線
x2
m
-
y2
3
=1有兩個公共點,則m的
取值范圍是( 。
A.m>-1且m≠3B.0<m<7且m≠3C.m>7D.m<0
x2
m
-
y2
3
=1
表示雙曲線
則m>0,故可排除A,D
將y=x+2代入
x2
m
-
y2
3
=1
后整理得:
1
m
-
1
3
)x2-
4
3
x-
7
3
=0
若直線y=x+2與
x2
m
-
y2
3
=1
有兩個公共點
1
m
-
1
3
≠0且(
4
3
)2+
28
3
1
m
-
1
3
)>0
解得0<m<7且m≠3
故選B
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

設(shè)分別是雙曲線的左、右焦點.若點在雙曲線上,且,則                       .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知A、B、C是長軸長為4的橢圓上的三點,點A是長軸的一個頂點,BC過橢圓中心O,如圖,且
AC
BC
=0
,|BC|=2|AC|.
(1)求橢圓的方程;
(2)如果橢圓上兩點P、Q使∠PCQ的平分線垂直AO,則總存在實數(shù)λ,使
PQ
AB
,請給出證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知動點P(x,y)滿足,
x2+y2-4x+6y+13
+
x2+y2+6x+4y+13
=
26
,則
y-1
x-3
取值范圍( 。
A.(-∞,
1
2
]∪[4,+∞)
B.(-∞,
1
4
]∪[2+∞)
C.[
1
2
,4]
D.[
1
4
,2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
的長軸長是短軸長的兩倍,且過點A(2,1).
(1)求橢圓C的標(biāo)準方程;
(2)若直線l:x-1-y=0與橢圓C交于不同的兩點M,N,求|MN|的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(文)如圖,O為坐標(biāo)原點,過點P(2,0)且斜率為k的直線l交拋物線y2=2x于A(x1,y1),B(x2,y2)兩點.
(1)求x1x2與y1y2的值;
(2)求證:OA⊥OB.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓
x2
a2
+
y2
b2
=1(a>b>0)經(jīng)過點A(1,
2
2
),且離心率為
2
2
,過點B(2,0)的直線l與橢圓交于不同的兩點M、N.
(Ⅰ)求橢圓的方程;
(Ⅱ)求
.
BM
.
BN
的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓
x2
a2
+
y2
b2
=1(a>b>0)的左、右焦點分別為F1、F2,焦距為2c;若以F2為圓心,b-c為半徑作圓F2,過橢圓上任一點P(x0,y0)作此圓的切線,切點為T,且|PT|的最小值不小于
3
2
(a-c).
(Ⅰ)證明:|PF2|的最小值為a-c;
(Ⅱ)求橢圓的離心率e的取值范圍;
(Ⅲ)若橢圓的短半軸長為1,圓F2與x軸的右交點為Q,過點Q作斜率為2的直線l與橢圓交于A、B兩點,若OA⊥OB,求橢圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

過雙曲線的左焦點F作傾斜角為的直線與雙曲線相交于A、B兩點,若,則雙曲線的離心率為(    )
A、              B、            C、         D、2

查看答案和解析>>

同步練習(xí)冊答案