【題目】甲、乙、丙三人在政治、歷史、地理、物理、化學(xué)、生物、技術(shù)7門學(xué)科中任選3門.若同學(xué)甲必選物理,則下列說法正確的是( )
A.甲、乙、丙三人至少一人選化學(xué)與全選化學(xué)是對立事件
B.甲的不同的選法種數(shù)為15
C.已知乙同學(xué)選了物理,乙同學(xué)選技術(shù)的概率是
D.乙、丙兩名同學(xué)都選物理的概率是
【答案】BD
【解析】
根據(jù)對立事件的概念可判斷A;直接根據(jù)組合的意義可判斷B;乙同學(xué)選技術(shù)的概率是可判斷 C;根據(jù)相互獨(dú)立事件同時(shí)發(fā)生的概率可判斷D.
甲、乙、丙三人至少一人選化學(xué)與全不選化學(xué)是對立事件,故A錯(cuò)誤;
由于甲必選物理,故只需從剩下6門課中選兩門即可,即種選法,故B正確;
由于乙同學(xué)選了物理,乙同學(xué)選技術(shù)的概率是,故C錯(cuò)誤;
乙、丙兩名同學(xué)各自選物理的概率均為,故乙、丙兩名同學(xué)都選物理的概率是,故D正確;
故選BD.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某廠生產(chǎn)產(chǎn)品x件的總成本c(x)=1200+ x3(萬元),已知產(chǎn)品單價(jià)P(萬元)與產(chǎn)品件數(shù)x滿足:p2= ,生產(chǎn)100件這樣的產(chǎn)品單價(jià)為50萬元.
(1)設(shè)產(chǎn)量為x件時(shí),總利潤為L(x)(萬元),求L(x)的解析式;
(2)產(chǎn)量x定為多少件時(shí)總利潤L(x)(萬元)最大?并求最大值(精確到1萬元).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在四邊形ABCD中,AD∥BC,BC=2AD,E,F分別為AD,BC的中點(diǎn),AE=EF,.將四邊形ABFE沿EF折起,使平面ABFE⊥平面EFCD(如圖2),G是BF的中點(diǎn).
(1)證明:AC⊥EG;
(2)在線段BC上是否存在一點(diǎn)H,使得DH∥平面ABFE?若存在,求的值;若不存在,說明理由;
(3)求二面角D-AC-F的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本小題滿分12分)如圖,在三棱柱ABC-A1B1C1中,側(cè)棱垂直于底面,AB⊥BC,E、F分別為A1C1和BC的中點(diǎn).
(1)求證:平面ABE⊥平面B1BCC1;
(2)求證:C1F//平面ABE.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐中,底面ABCD為矩形,平面ABCD,E為PD的中點(diǎn).
(1)證明:平面AEC;
(2)若,,,求二面角的平面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列說法正確的是( )
A.若冪函數(shù)的圖象過點(diǎn),則
B.命題:“,”,則的否定為“,”
C.“”是“”的充分不必要條件
D.若與是相互獨(dú)立事件,則與也是相互獨(dú)立事件
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),其中.
(1)求函數(shù)的單調(diào)區(qū)間;
(2)若函數(shù)存在兩個(gè)極值點(diǎn),,且,證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了美化環(huán)境,某公園欲將一塊空地規(guī)劃建成休閑草坪,休閑草坪的形狀為如圖所示的四邊形ABCD.其中AB=3百米,AD=百米,且△BCD是以D為直角頂點(diǎn)的等腰直角三角形.?dāng)M修建兩條小路AC,BD(路的寬度忽略不計(jì)),設(shè)∠BAD=,(,).
(1)當(dāng)cos=時(shí),求小路AC的長度;
(2)當(dāng)草坪ABCD的面積最大時(shí),求此時(shí)小路BD的長度.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系中,直線的方程為,曲線:(為參數(shù),),在以原點(diǎn)為極點(diǎn),軸正半軸為極軸的極坐標(biāo)系中,曲線:.
(1)求曲線的普通方程和曲線的直角坐標(biāo)方程;
(2)若直線與曲線有公共點(diǎn),且直線與曲線的交點(diǎn)恰好在曲線與軸圍成的區(qū)域(不含邊界)內(nèi),求的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com