正實(shí)數(shù)數(shù)列{an}中,a1=1,a2=5,且{}成等差數(shù)列.
(1)證明:數(shù)列{an}中有無窮多項(xiàng)為無理數(shù);
(2)當(dāng)n為何值時(shí),an為整數(shù)?并求出使an<200的所有整數(shù)項(xiàng)的和.
(1)見解析  (2)當(dāng)n=+1(m∈N)和n=+1(m∈N*)時(shí),an為整數(shù),6733

(1)證明:由已知有:=1+24(n-1),
從而an=.
取n-1=242k-1,則an=(k∈N*).
用反證法證明這些an都是無理數(shù).
假設(shè)an=為有理數(shù),則an必為正整數(shù),
且an>24k,故an-24k≥1,an+24k>1,與(an-24k)(an+24k)=1矛盾,
所以an=(k∈N*)都是無理數(shù),
即數(shù)列{an}中有無窮多項(xiàng)為無理數(shù).
(2)解:要使an為整數(shù),由(an-1)(an+1)=24(n-1)可知:an-1,an+1同為偶數(shù),且其中一個(gè)必為3的倍數(shù),
所以有an-1=6m或an+1=6m.
當(dāng)an=6m+1時(shí),有=36m2+12m+1=1+12m(3m+1)(m∈N).
又m(3m+1)必為偶數(shù),
所以an=6m+1(m∈N)滿足=1+24(n-1),
即n=+1(m∈N)時(shí),an為整數(shù);
同理an=6m-1(m∈N*)時(shí),有=36m2-12m+1=1+12m(3m-1)(m∈N*)也滿足=1+24(n-1),
即n=+1(m∈N*)時(shí),an為整數(shù);
顯然an=6m-1(m∈N*)和an=6m+1(m∈N)是數(shù)列中的不同項(xiàng),
所以當(dāng)n=+1(m∈N)和n=+1(m∈N*)時(shí),an為整數(shù).
由an=6m+1<200(m∈N)有0≤m≤33,
由an=6m-1<200(m∈N*)有1≤m≤33.
設(shè)an中滿足an<200的所有整數(shù)項(xiàng)的和為S,
則S=(1+7+13+…+199)+(5+11+…+197)= ×34+×33=6733.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)是各項(xiàng)均不為零的)項(xiàng)等差數(shù)列,且公差.
(1)若,且該數(shù)列前項(xiàng)和最大,求的值;
(2)若,且將此數(shù)列刪去某一項(xiàng)后得到的數(shù)列(按原來的順序)是等比數(shù)列,求的值;
(3)若該數(shù)列中有一項(xiàng)是,則數(shù)列中是否存在不同三項(xiàng)(按原來的順序)為等比數(shù)列?請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

數(shù)列中,,是常數(shù),),且成公比不為的等比數(shù)列.
(1)求的值;
(2)求的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知數(shù)列是公差不為0的等差數(shù)列,a1=2且a2,a3,a4+1成等比數(shù)列。
(1)求數(shù)列的通項(xiàng)公式;
(2)設(shè),求數(shù)列的前項(xiàng)和

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

在數(shù)列中,其前項(xiàng)和為,滿足.
(1)求數(shù)列的通項(xiàng)公式;
(2)設(shè),求數(shù)列的前項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

各項(xiàng)均為正數(shù)的數(shù)列,滿足:,,那么(    )
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

根據(jù)市場(chǎng)調(diào)查結(jié)果,預(yù)測(cè)某種家用商品從年初開始的n個(gè)月內(nèi)累積的需求量Sn(萬件)近似地滿足關(guān)系式Sn(21n-n2-5)(n=1,2,…,12),按此預(yù)測(cè),在本年度內(nèi),需求量超過1.5萬件的月份是________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知數(shù)列的前n項(xiàng)和為Sn,并且滿足a1=2,nan+1=Sn+n(n+1).
(1)求{an}的通項(xiàng)公式;
(2)令Tn Sn,是否存在正整數(shù)m,對(duì)一切正整數(shù)n,總有Tn≤Tm?若存在,求m的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

等差數(shù)列的前項(xiàng)和為,則       

查看答案和解析>>

同步練習(xí)冊(cè)答案