(1)
已知函數(shù)f(x)在區(qū)間[-b,-a](b>a>0)上是一個(gè)恒大于0的減函數(shù),試問函數(shù)|f(x)|在區(qū)間[a,b]上是增函數(shù)還是減函數(shù)?證明你的結(jié)論.(2)
已知y=f(x)是奇函數(shù),它在上是增函數(shù),且f(x)<0,試問在上是增函數(shù)還是減函數(shù)?證明你的結(jié)論.
(1) 證明:設(shè),則,由f(x)在[-b,-a]上遞減,有.又 f(x)是奇函數(shù),則于是 ,∴而 函數(shù)|f(x)|在區(qū)間[a,b]上單調(diào)遞增.(2) 解:根據(jù)函數(shù)的單調(diào)性的定義,可以設(shè),進(jìn)而判斷的正負(fù)號.任取 、,且<則有.y=f(x) 在上是增函數(shù),且f(x)<0, <<0.又f(x)是奇函數(shù), .由①、②得 >>0.于是 >0,即 . 上是減函數(shù).本題最容易發(fā)生的錯(cuò)誤是一開始就在 內(nèi)任取,展開證明,這樣就不能保證,在內(nèi)的任意性而導(dǎo)致錯(cuò)誤.避免錯(cuò)誤的方法是:一定要在 內(nèi),任取,進(jìn)而利用問題已知條件判斷的符號. |
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
1+x2 |
b(1+x2) |
3 |
3 |
1 |
2 |
1 |
2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(2)已知函數(shù)f(x)滿足f(x+y)+f(x-y)=
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:閱讀理解
仔細(xì)閱讀下面問題的解法:
設(shè)A=[0, 1],若不等式21-x-a>0在A上有解,求實(shí)數(shù)a的取值范圍。
解:由已知可得 a < 21-x
令f(x)= 21-x ,∵不等式a <21-x在A上有解,
∴a <f(x)在A上的最大值.
又f(x)在[0,1]上單調(diào)遞減,f(x)max =f(0)=2. ∴實(shí)數(shù)a的取值范圍為a<2.
研究學(xué)習(xí)以上問題的解法,請解決下面的問題:
(1)已知函數(shù)f(x)=x2+2x+3(-2≤x≤-1),求f(x)的反函數(shù)及反函數(shù)的定義域A;
(2)對于(1)中的A,設(shè)g(x)=,x∈A,試判斷g(x)的單調(diào)性(寫明理由,不必證明);
(3)若B ={x|>2x+a–5},且對于(1)中的A,A∩B≠F,求實(shí)數(shù)a的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:新課標(biāo)高三數(shù)學(xué)函數(shù)的圖象奇偶性、周期性專項(xiàng)訓(xùn)練(河北) 題型:解答題
若函數(shù)f(x)對定義域中任意x均滿足f(x)+f(2a-x)=2b,則稱函數(shù)y=f(x)的圖象關(guān)于點(diǎn)(a,b)對稱.
(1)已知函數(shù)f(x)=的圖象關(guān)于點(diǎn)(0,1)對稱,求實(shí)數(shù)m的值;
(2)已知函數(shù)g(x)在(-∞,0)∪(0,+∞)上的圖象關(guān)于點(diǎn)(0,1)對稱,且當(dāng)x∈(0,+∞)時(shí),g(x)=x2+ax+1,求函數(shù)g(x)在(-∞,0)上的解析式;
(3)在(1)(2)的條件下,當(dāng)t>0時(shí),若對任意實(shí)數(shù)x∈(-∞,0),恒有g(shù)(x)<f(t)成立,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com