已知函數(shù)。
(1)當(dāng)a=3時(shí),求不等式的解集;
(2)若對(duì)恒成立,求實(shí)數(shù)a的取值范圍。

(1);(2).

解析試題分析:(1)利用零點(diǎn)分段法去絕對(duì)值,分為三種情況,當(dāng)時(shí),當(dāng),當(dāng)時(shí)解不等式;求三個(gè)交集,一個(gè)并集,最終結(jié)果寫(xiě)成集合形式;
(2)將原不等式轉(zhuǎn)化為恒成立,畫(huà)圖,的圖像,滿足恒成立的圖像,要求始終在的上面,而的圖像時(shí)折線,折點(diǎn)坐標(biāo)為,讓與端點(diǎn)值比較大小,同時(shí)得到的取值范圍.
試題解析:(1)時(shí),即求解
①當(dāng)時(shí),
②當(dāng)時(shí),
③當(dāng)時(shí),
綜上,解集為          5分

(2)即恒成立
則函數(shù)圖象為
,        ..10分
考點(diǎn):1.解絕對(duì)值不等式;2.利用函數(shù)圖象解不等式.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)是常數(shù)且)在區(qū)間上有.
(1)求的值;
(2)若當(dāng)時(shí),求的取值范圍;

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)在點(diǎn)處的切線方程為.
(1)求、的值;
(2)當(dāng)時(shí),恒成立,求實(shí)數(shù)的取值范圍;
(3)證明:當(dāng),且時(shí),.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù).
(1)求函數(shù)的單調(diào)區(qū)間和極值;
(2)若對(duì)上恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)
(1)當(dāng)時(shí),判斷的單調(diào)性,并用定義證明.
(2)若對(duì)任意,不等式 恒成立,求的取值范圍;
(3)討論零點(diǎn)的個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)定義在(―1,1)上,對(duì)于任意的,有,且當(dāng)時(shí),。
(1)驗(yàn)證函數(shù)是否滿足這些條件;
(2)判斷這樣的函數(shù)是否具有奇偶性和單調(diào)性,并加以證明;
(3)若,求方程的解。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(1)求函數(shù)f(x)=x3-2x2-x+2的零點(diǎn);
(2)已知函數(shù)f(x)=ln(x+1)-,試求函數(shù)的零點(diǎn)個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知x∈[-3,2],求f(x)=+1的最小值與最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知是定義在上的奇函數(shù),當(dāng)時(shí),
(1)求
(2)求的解析式;
(3)若,求區(qū)間

查看答案和解析>>

同步練習(xí)冊(cè)答案