如圖,是橢圓的左、右頂點,橢圓的離心率為,右準(zhǔn)線的方程為.

(1)求橢圓方程;
(2)設(shè)是橢圓上異于的一點,直線于點,以為直徑的圓記為. ①若恰好是橢圓的上頂點,求截直線所得的弦長;
②設(shè)與直線交于點,試證明:直線軸的交點為定點,并求該定點的坐標(biāo).
(1) (2) ①

試題分析:(1)求橢圓方程,基本方法是待定系數(shù)法.關(guān)鍵是找全所需條件. 橢圓中三個未知數(shù)的確定只需兩個獨立條件,由可得值,(2) ①求圓被直線所截得弦長時,利用半徑、半弦長、圓心到直線距離三者成勾股列等量關(guān)系,先分別確定直線的方程與圓K的方程,②證明直線軸的交點為定點,實質(zhì)為求直線軸的交點.由①知,點是關(guān)鍵點,不妨設(shè)點的坐標(biāo)作為參數(shù),先表示直線的方程,與圓的方程聯(lián)立解出點P的坐標(biāo).由得直線的斜率,從而得直線的方程,再令,得點R的橫坐標(biāo)為,利用點M滿足化簡得
試題解析:(1)由,解得,故
(2)①因為,所以直線的方程為,從而的方程為 6分
又直線的方程為,故圓心到直線的距離為  8分
從而截直線所得的弦長為   9分
②證:設(shè),則直線的方程為,則點P的坐標(biāo)為,又直線的斜率為,而,
所以,從而直線的方程為 12分
,得點R的橫坐標(biāo)為      13分
又點M在橢圓上,所以,即,故,
所以直線軸的交點為定點,且該定點的坐標(biāo)為      15分
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知平面五邊形關(guān)于直線對稱(如圖(1)),,,將此圖形沿折疊成直二面角,連接、得到幾何體(如圖(2))

(1)證明:平面;
(2)求平面與平面的所成角的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

拋物線在點,處的切線垂直相交于點,直線與橢圓相交于,兩點.

(1)求拋物線的焦點與橢圓的左焦點的距離;
(2)設(shè)點到直線的距離為,試問:是否存在直線,使得,成等比數(shù)列?若存在,求直線的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓C=1(ab>0)的離心率為,其左、右焦點分別是F1、F2,過點F1的直線l交橢圓CEG兩點,且△EGF2的周長為4.
(1)求橢圓C的方程;
(2)若過點M(2,0)的直線與橢圓C相交于兩點A、B,設(shè)P為橢圓上一點,且滿足t (O為坐標(biāo)原點),當(dāng)||<時,求實數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

若拋物線y2=4x上的點A到其焦點的距離是6,則點A的橫坐標(biāo)是            (    )
A.5B.6C.7D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知是橢圓的兩個焦點,過的直線交橢圓于兩點,若的周長為,則橢圓方程為( 。
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知是雙曲線上不同的三點,且連線經(jīng)過坐標(biāo)原點,若直線的斜率乘積,則該雙曲線的離心率為(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知雙曲線的兩條漸近線與拋物線的準(zhǔn)線分別交于兩點,為坐標(biāo)原點,的面積為,則雙曲線的離心率(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

若雙曲線的漸近線與拋物線的準(zhǔn)線所圍成的三角形面積為,則該雙曲線的離心率為(     )
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊答案