【題目】已知函數(shù)f(x)=.
(1)求f(x)的定義域及最小正周期;
(2)求f(x)的單調(diào)遞增區(qū)間.
【答案】(1) 詳見(jiàn)解析;(2) [kπ-,kπ)∪(kπ,kπ+]k∈Z.
【解析】試題分析:(1)根據(jù)正弦函數(shù)的性質(zhì)求出函數(shù)的定義域,再根據(jù)二倍角公式和兩角和與差的正弦公式化簡(jiǎn),得到函數(shù)的最小正周期;(2)由正弦函數(shù)的單調(diào)區(qū)間求解即可.
試題解析:
(1)由sinx≠0得x≠kπ(k∈Z),故f(x)的定義域?yàn)閧x|x∈R且x≠kπ,k∈Z}.
∴f(x)=
=2cosx(sinx-cosx)=sin2x-cos2x-1
=sin(2x-)-1,∴f(x)的最小正周期T==π.
(2)函數(shù)y=sinx的單調(diào)遞增區(qū)間為[2kπ-,2kπ+](k∈Z).
由2kπ-≤2x-≤2kπ+,x≠kπ(k∈Z),
得kπ-≤x≤kπ+,x≠kπ(k∈Z).
∴f(x)的單調(diào)遞增區(qū)間為[kπ-,kπ)∪(kπ,kπ+]k∈Z.
點(diǎn)睛:本題考查三角函數(shù)的圖象與性質(zhì),以及同角三角函數(shù)的基本關(guān)系,屬于中檔題目.三角函數(shù)的化簡(jiǎn)往往利用誘導(dǎo)公式,兩角和與差的公式以及二倍角公式化為函數(shù)形式,再根據(jù)正弦函數(shù)的有界性,單調(diào)區(qū)間,周期性和對(duì)稱性等求解.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
(1)若在上是單調(diào)函數(shù),求實(shí)數(shù)取值范圍.
(2)求在區(qū)間上的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(本小題12分)甲、乙兩位學(xué)生參加數(shù)學(xué)競(jìng)賽培訓(xùn),在培訓(xùn)期間,他們參加的5項(xiàng)預(yù)賽成績(jī)記錄如下:
甲 | 82 | 82 | 79 | 95 | 87 |
乙 | 95 | 75 | 80 | 90 | 85 |
(1)從甲、乙兩人的成績(jī)中各隨機(jī)抽取一個(gè),求甲的成績(jī)比乙高的概率;
(2)現(xiàn)要從中選派一人參加數(shù)學(xué)競(jìng)賽,從統(tǒng)計(jì)學(xué)的角度考慮,你認(rèn)為選派哪位學(xué)生參加合適?說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲、乙兩家商場(chǎng)對(duì)同一種商品開(kāi)展促銷活動(dòng),對(duì)購(gòu)買該商品的顧客兩家商場(chǎng)的獎(jiǎng)勵(lì)方案如下:
甲商場(chǎng):顧客轉(zhuǎn)動(dòng)如圖所示圓盤,當(dāng)指針指向陰影部分(圖中兩個(gè)陰影部分均為扇形,且每個(gè)扇形圓心角均為,邊界忽略不計(jì))即為中獎(jiǎng)·
乙商場(chǎng):從裝有2個(gè)白球、2個(gè)藍(lán)球和2個(gè)紅球的盒子中一次性摸出1球(這些球除顏色外完全相同),它是紅球的概率是,若從盒子中一次性摸出2球,且摸到的是2個(gè)相同顏色的球,即為中獎(jiǎng).
(Ⅰ)求實(shí)數(shù)的值;
(Ⅱ)試問(wèn):購(gòu)買該商品的顧客在哪家商場(chǎng)中獎(jiǎng)的可能性大?請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】小明同學(xué)在寒假社會(huì)實(shí)踐活動(dòng)中,對(duì)白天平均氣溫與某家奶茶店的品牌飲料銷量之間的關(guān)系進(jìn)行了分析研究,他分別記錄了1月11日至1月15日的白天氣溫()與該奶茶店的品牌飲料銷量(杯),得到如表數(shù)據(jù):
日期 | 1月11號(hào) | 1月12號(hào) | 1月13號(hào) | 1月14號(hào) | 1月15號(hào) |
平均氣溫() | 9 | 10 | 12 | 11 | 8 |
銷量(杯) | 23 | 25 | 30 | 26 | 21 |
(1)若先從這五組數(shù)據(jù)中抽出2組,求抽出的2組數(shù)據(jù)恰好是相鄰2天數(shù)據(jù)的概率;
(2)請(qǐng)根據(jù)所給五組數(shù)據(jù),求出關(guān)于的線性回歸方程式;
(3)根據(jù)(2)所得的線性回歸方程,若天氣預(yù)報(bào)1月16號(hào)的白天平均氣溫為,請(qǐng)預(yù)測(cè)該奶茶店這種飲料的銷量.
(參考公式:,)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列的前項(xiàng)和為,且滿足,求數(shù)列的通項(xiàng)公式.勤于思考的小紅設(shè)計(jì)了下面兩種解題思路,請(qǐng)你選擇其中一種并將其補(bǔ)充完整.
思路1:先設(shè)的值為1,根據(jù)已知條件,計(jì)算出_________, __________, _________.
猜想: _______.
然后用數(shù)學(xué)歸納法證明.證明過(guò)程如下:
①當(dāng)時(shí),________________,猜想成立
②假設(shè)(N*)時(shí),猜想成立,即_______.
那么,當(dāng)時(shí),由已知,得_________.
又,兩式相減并化簡(jiǎn),得_____________(用含的代數(shù)式表示).
所以,當(dāng)時(shí),猜想也成立.
根據(jù)①和②,可知猜想對(duì)任何N*都成立.
思路2:先設(shè)的值為1,根據(jù)已知條件,計(jì)算出_____________.
由已知,寫出與的關(guān)系式: _____________________,
兩式相減,得與的遞推關(guān)系式: ____________________.
整理: ____________.
發(fā)現(xiàn):數(shù)列是首項(xiàng)為________,公比為_______的等比數(shù)列.
得出:數(shù)列的通項(xiàng)公式____,進(jìn)而得到____________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
⑴討論函數(shù)的單調(diào)性;
⑵若存在兩個(gè)極值點(diǎn),且是函數(shù)的極小值點(diǎn),求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲、乙、丙、丁四個(gè)物體同時(shí)從某一點(diǎn)出發(fā)向同一個(gè)方向運(yùn)動(dòng),其路程關(guān)于時(shí)間的函數(shù)關(guān)系式分別為, , , ,有以下結(jié)論:
①當(dāng)時(shí),甲走在最前面;
②當(dāng)時(shí),乙走在最前面;
③當(dāng)時(shí),丁走在最前面,當(dāng)時(shí),丁走在最后面;
④丙不可能走在最前面,也不可能走在最后面;
⑤如果它們一直運(yùn)動(dòng)下去,最終走在最前面的是甲.
其中,正確結(jié)論的序號(hào)為 (把正確結(jié)論的序號(hào)都填上,多填或少填均不得分).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),.
(Ⅰ)當(dāng)a=2時(shí),求(x)在x∈[1,e2]時(shí)的最值(參考數(shù)據(jù):e2≈7.4);
(Ⅱ)若,有f(x)+g(x)≤0恒成立,求實(shí)數(shù)a的值;
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com