【題目】已知函數(shù).

1)求的最小正周期;

2)求在區(qū)間上對(duì)稱軸、對(duì)稱中心及其最值.

【答案】(1)最小正周期為(2)對(duì)稱軸,對(duì)稱中心為,最大值為,最小值為

【解析】

(1)根據(jù)同角三角函數(shù)關(guān)系式的平方和關(guān)系、降冪公式、輔助角公式把函數(shù)的解析式化簡(jiǎn)成正弦型函數(shù)解析形式,最后根據(jù)最小正周期公式求出函數(shù)的最小正周期;

(2)利用正弦型函數(shù)的對(duì)稱性和單調(diào)性,求出在區(qū)間上對(duì)稱軸、對(duì)稱中心及其最值

解:(1)因?yàn)?/span>

,

所以,函數(shù)的最小正周期為.

(2)由(1)知,

因?yàn)?/span>,所以,①

,得,

所以,即為所求函數(shù)上的對(duì)稱軸;

,得,所以,

所以函數(shù)上的對(duì)稱中心為;(*)

易判斷函數(shù)上單調(diào)遞增;在上單調(diào)遞增.

所以,,,

故函數(shù)在區(qū)間上最大值為,最小值為.

【另解】

接(*)式

由①得,所以,

故函數(shù)在區(qū)間上最大值為,最小值為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】我國(guó)古代數(shù)學(xué)名著《九章算術(shù)》中記載了有關(guān)特殊幾何體的定義:陽(yáng)馬指底面為矩形,一側(cè)棱垂直于底面的四棱錐,塹堵指底面是直角三角形,且側(cè)棱垂直于底面的三棱柱.

1)某塹堵的三視圖,如圖1,網(wǎng)格中的每個(gè)小正方形的邊長(zhǎng)為1,求該塹堵的體積;

2)在塹堵中,如圖2,,若,當(dāng)陽(yáng)馬的體積最大時(shí),求二面角的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),

1)討論上的單調(diào)性.

2)當(dāng)時(shí),若上的最大值為,證明:函數(shù)內(nèi)有且僅有2個(gè)零點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】張軍自主創(chuàng)業(yè),在網(wǎng)上經(jīng)營(yíng)一家干果店,銷售的干果中有松子、開心果、腰果、核桃,價(jià)格依次為120/千克、80/千克、70/千克、40元千克,為增加銷量,張軍對(duì)這四種干果進(jìn)行促銷:一次購(gòu)買干果的總價(jià)達(dá)到150元,顧客就少付x(2xZ).每筆訂單顧客網(wǎng)上支付成功后,張軍會(huì)得到支付款的80%.

①若顧客一次購(gòu)買松子和腰果各1千克,需要支付180元,則x=________;

②在促銷活動(dòng)中,為保證張軍每筆訂單得到的金額均不低于促銷前總價(jià)的七折,則x的最大值為_____.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列的前項(xiàng)和為,且滿足:

(1)證明:是等比數(shù)列,并求數(shù)列的通項(xiàng)公式.

(2)設(shè),若數(shù)列是等差數(shù)列,求實(shí)數(shù)的值;

(3)在(2)的條件下,設(shè) 記數(shù)列的前項(xiàng)和為,若對(duì)任意的存在實(shí)數(shù),使得,求實(shí)數(shù)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖:已知某公園的四處景觀分別位于等腰梯形的四個(gè)頂點(diǎn)處,其中,兩地的距離為千米,,兩地的距離為千米,.現(xiàn)擬規(guī)劃在(不包括端點(diǎn))路段上增加一個(gè)景觀,并建造觀光路直接通往處,造價(jià)為每千米萬元,又重新裝飾路段,造價(jià)為每千米萬元.

(1)若擬修建觀光路路段長(zhǎng)為千米,求路段的造價(jià);

(2)設(shè),當(dāng)為何值時(shí),,段的總造價(jià)最低.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè),是兩條不同的直線,,,是三個(gè)不同的平面,給出下列四個(gè)命題:

①若,,則,為異面直線; ②若,,則

③若,,則; ④若,,,則.

則上述命題中真命題的序號(hào)為(

A.①②B.③④C.D.②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓 經(jīng)過橢圓 的左右焦點(diǎn),且與橢圓在第一象限的交點(diǎn)為,且三點(diǎn)共線,直線交橢圓 兩點(diǎn),且).

(1)求橢圓的方程;

(2)當(dāng)三角形的面積取得最大值時(shí),求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某射擊小組有甲、乙、丙三名射手,已知甲擊中目標(biāo)的概率是,甲、丙二人都沒有擊中目標(biāo)的概率是,乙、丙二人都擊中目標(biāo)的概率是.甲乙丙是否擊中目標(biāo)相互獨(dú)立.

1)求乙、丙二人各自擊中目標(biāo)的概率;

2)設(shè)乙、丙二人中擊中目標(biāo)的人數(shù)為X,求X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

同步練習(xí)冊(cè)答案