(本小題滿分12分)

設(shè)動(dòng)點(diǎn)P到點(diǎn)A(-l,0)和B(1,0)的距離分別為d1d2

APB=2θ,且存在常數(shù)λ(0<λ<1=,使得d1d2 sin2θ=λ.

   (1)證明:動(dòng)點(diǎn)P的軌跡C為雙曲線,并求出C的方程;

   (2)過點(diǎn)B作直線交雙曲線C的右支于M、N

點(diǎn),試確定λ的范圍,使·=0,其中點(diǎn)

O為坐標(biāo)原點(diǎn).

                          

 

【答案】

(1)動(dòng)點(diǎn)P的軌跡C為雙曲線,方程為:

(2).由①②知

【解析】解法一:(1)在中,,即,

,即(常數(shù)),

點(diǎn)的軌跡是以為焦點(diǎn),實(shí)軸長(zhǎng)的雙曲線.

方程為:

(2)設(shè),

①當(dāng)垂直于軸時(shí),的方程為,,在雙曲線上.

,因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012051811051871876411/SYS201205181106188281158085_DA.files/image021.png">,所以

②當(dāng)不垂直于軸時(shí),設(shè)的方程為

得:,

由題意知:,

所以,

于是:

因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012051811051871876411/SYS201205181106188281158085_DA.files/image030.png">,且在雙曲線右支上,所以

由①②知,

解法二:(1)同解法一

(2)設(shè),的中點(diǎn)為

①當(dāng)時(shí),,

因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012051811051871876411/SYS201205181106188281158085_DA.files/image021.png">,所以;

②當(dāng)時(shí),

.所以;

,由第二定義得

所以

于是由

因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012051811051871876411/SYS201205181106188281158085_DA.files/image047.png">,所以,又

解得:.由①②知

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(文) (本小題滿分12分已知函數(shù)y=4-2
3
sinx•cosx-2sin2x(x∈R)

(1)求函數(shù)的值域和最小正周期;
(2)求函數(shù)的遞減區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•自貢三模)(本小題滿分12分>
設(shè)平面直角坐標(biāo)中,O為原點(diǎn),N為動(dòng)點(diǎn),|
ON
|=6,
ON
=
5
OM
.過點(diǎn)M作MM1丄y軸于M1,過N作NN1⊥x軸于點(diǎn)N1,
OT
=
M1M
+
N1N
,記點(diǎn)T的軌跡為曲線C.
(I)求曲線C的方程:
(H)已知直線L與雙曲線C:5x2-y2=36的右支相交于P、Q兩點(diǎn)(其中點(diǎn)P在第-象限).線段OP交軌跡C于A,若
OP
=3
OA
,S△PAQ=-26tan∠PAQ求直線L的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(本小題滿分12分)已知函數(shù),且。①求的最大值及最小值;②求的在定義域上的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2009湖南卷文)(本小題滿分12分)

為拉動(dòng)經(jīng)濟(jì)增長(zhǎng),某市決定新建一批重點(diǎn)工程,分別為基礎(chǔ)設(shè)施工程、民生工程和產(chǎn)業(yè)建設(shè)工程三類,這三類工程所含項(xiàng)目的個(gè)數(shù)分別占總數(shù)的、、.現(xiàn)有3名工人獨(dú)立地從中任選一個(gè)項(xiàng)目參與建設(shè).求:

(I)他們選擇的項(xiàng)目所屬類別互不相同的概率;    w.w.w.k.s.5.u.c.o.m    

(II)至少有1人選擇的項(xiàng)目屬于民生工程的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(本小題滿分12分)

某民營企業(yè)生產(chǎn)A,B兩種產(chǎn)品,根據(jù)市場(chǎng)調(diào)查和預(yù)測(cè),A產(chǎn)品的利潤(rùn)與投資成正比,其關(guān)系如圖1,B產(chǎn)品的利潤(rùn)與投資的算術(shù)平方根成正比,其關(guān)系如圖2,

(注:利潤(rùn)與投資單位是萬元)

(1)分別將A,B兩種產(chǎn)品的利潤(rùn)表示為投資的函數(shù),并寫出它們的函數(shù)關(guān)系式.(2)該企業(yè)已籌集到10萬元資金,并全部投入到A,B兩種產(chǎn)品的生產(chǎn),問:怎樣分配這10萬元投資,才能使企業(yè)獲得最大利潤(rùn),其最大利潤(rùn)為多少萬元.

查看答案和解析>>

同步練習(xí)冊(cè)答案