【題目】已知方程x2+y2+4x﹣2y﹣4=0,則x2+y2的最大值是(
A.
B.
C.14﹣
D.14+

【答案】D
【解析】解:由方程x2+y2+4x﹣2y﹣4=0得到圓心為(﹣2,1),半徑為3,設圓上一點為(x,y)
圓心到原點的距離是 =
圓上的點到原點的最大距離是 +3
故x2+y2的最大值是為( +3)2=14+
故選D
【考點精析】通過靈活運用圓的一般方程,掌握圓的一般方程的特點:(1)①x2和y2的系數(shù)相同,不等于0.②沒有xy這樣的二次項;(2)圓的一般方程中有三個特定的系數(shù)D、E、F,因之只要求出這三個系數(shù),圓的方程就確定了;(3)、與圓的標準方程相比較,它是一種特殊的二元二次方程,代數(shù)特征明顯,圓的標準方程則指出了圓心坐標與半徑大小,幾何特征較明顯即可以解答此題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】若數(shù)列{an}是等差數(shù)列,首項a1>0,a2003+a2004>0,a2003 . a2004<0,則使前n項和Sn>0成立的最大自然數(shù)n是(
A.4005
B.4006
C.4007
D.4008

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,已知橢圓的左、右頂點分別為,上、下頂點分別為,兩個焦點分別為, ,四邊形的面積是四邊形的面積的2倍.

(1)求橢圓的方程;

(2)過橢圓的右焦點且垂直于軸的直線交橢圓兩點, 是橢圓上位于直線兩側的兩點.若,求證:直線的斜率為定值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知cosα= ,cos(α+β)=﹣ ,且α,β∈(0, ),則cos(α﹣β)的值等于(
A.﹣
B.
C.﹣
D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設直線l的方程是x+my+2 =0,圓O的方程是x2+y2=r2(r>0).
(1)當m取一切實數(shù)時,直線l與圓O都有公共點,求r的取值范圍;
(2)r=5時,求直線l被圓O截得的弦長的取值范圍;
(3)當r=1時,設圓O與x軸相交于P,Q兩點,M是圓O上異于P,Q的任意一點,直線PM交直線l′:x=3于點P′,直線QM交直線l′于點Q′.求證:以P′Q′為直徑的圓C總經(jīng)過定點,并求出定點坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的左,右焦點分別為.點在橢圓上,直線過坐標原點,若 .

(1)求橢圓的方程;

(2) 設橢圓在點處的切線記為直線,點上的射影分別為,過的垂線交軸于點,試問是否為定值?若是,求出該定值;若不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知實數(shù)滿足,實數(shù),滿足,則的最小值為__________

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在銳角△ABC中,內(nèi)角A,B,C的對邊分別為a,b,c,且2asinB= b.
(Ⅰ)求角A的大。
(Ⅱ)若a=6,b+c=8,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,三棱柱ABC﹣A1B1C1中,AB=AC=AA1=BC1=2,∠AA1C1=60°,平面ABC1⊥平面AA1C1C,AC1與A1C相交于點D.

(1)求證:BD⊥A1C;
(2)若E在棱BC1上,且滿足DE∥面ABC,求三棱錐E﹣ACC1的體積.

查看答案和解析>>

同步練習冊答案