【題目】假設(shè)某種設(shè)備使用的年限(年)與所支出的維修費(fèi)用(萬(wàn)元)有以下統(tǒng)計(jì)資料:

使用年限

2

3

4

5

6

維修費(fèi)用

2

4

5

6

7

若由資料知對(duì)呈線性相關(guān)關(guān)系.試求:

1)求

2)線性回歸方程;

3)估計(jì)使用10年時(shí),維修費(fèi)用是多少?

附:利用最小二乘法計(jì)算的值時(shí),可根據(jù)以下公式:

【答案】1;(2;(3)維修費(fèi)用為12萬(wàn)元

【解析】

1)利用的計(jì)算公式即可得出;(2)利用的計(jì)算公式得出結(jié)果,再求即可;(3)利用第(2)問(wèn)得出的回歸方程,計(jì)算x=10時(shí)的結(jié)果即可.

1,
2=2×2+3×4+4×5+5×6+6×7=108,=5×4×4.8=96=90,=80
=1.2,=4.8-1.2×4=0
所以,線性回歸方程為=1.2x
3)當(dāng)x=10時(shí),y=12.
所以該設(shè)備使用10年,維修費(fèi)用的估計(jì)值為12萬(wàn)元.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(1)證明:當(dāng)時(shí),有且僅有一個(gè)零點(diǎn).

(2)當(dāng),函數(shù)的最小值為,求函數(shù)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知學(xué)校高三年級(jí)有學(xué)生1000名,經(jīng)調(diào)查研究,其中750名同學(xué)經(jīng)常參加體育鍛煉(稱為A類(lèi)同學(xué)),另外250名同學(xué)不經(jīng)常參加體育鍛煉(稱為B類(lèi)同學(xué)). 現(xiàn)用分層抽樣方法(按A類(lèi)、B類(lèi)分兩層)從該年級(jí)學(xué)生中共抽查100名同學(xué),測(cè)得這100名同學(xué)的身高(單位:)頻率分布直方圖如圖:

(Ⅰ)以同一組數(shù)據(jù)常用該組區(qū)間的中點(diǎn)值(例如區(qū)間的中點(diǎn)值為165)作為代表,計(jì)算這100名學(xué)生身高數(shù)據(jù)的平均值;

(Ⅱ)如果以身高不低于作為達(dá)標(biāo)的標(biāo)準(zhǔn),對(duì)抽取的100名學(xué)生,得到以下列聯(lián)表:

身高達(dá)標(biāo)

身高不達(dá)標(biāo)

總計(jì)

積極參加體育鍛煉

40

不積極參加體育鍛煉

15

總計(jì)

100

完成上表,并判斷是否有的把握認(rèn)為體育鍛煉與身高達(dá)標(biāo)有關(guān)系(值精確到0.01)?

參考公式:

參考數(shù)據(jù):

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為激發(fā)學(xué)生學(xué)習(xí)的興趣,老師上課時(shí)在黑板上寫(xiě)出三個(gè)集合: ;然后叫甲、乙、丙三位同學(xué)到講臺(tái)上,并將中的數(shù)告訴了他們,要求他們各用一句話來(lái)描述,以便同學(xué)們能確定該數(shù),以下是甲、乙、丙三位同學(xué)的描述:

甲:此數(shù)為小于6的正整數(shù);乙:AB成立的充分不必要條件;

丙:AC成立的必要不充分條件

若老師評(píng)說(shuō)這三位同學(xué)都說(shuō)得對(duì),則中的數(shù)為 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】若函數(shù)對(duì)定義域中任意x均滿足,則稱函數(shù)的圖象關(guān)于點(diǎn)對(duì)稱.

1)已知函數(shù)的圖象關(guān)于點(diǎn)對(duì)稱,求實(shí)數(shù)m的值;

2)已知函數(shù)上的圖象關(guān)于點(diǎn)對(duì)稱,且當(dāng)時(shí),,求函數(shù)上的解析式;

3)在(1)(2)的條件下,當(dāng)時(shí),若對(duì)任意實(shí)數(shù),恒有成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在三棱柱ABCA1B1C1中,已知M,N分別為線段BB1,A1C的中點(diǎn),MNAA1,且MA1MC.求證:

1MN平面ABC;

2)平面A1MC⊥平面A1ACC1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)p:實(shí)數(shù)x滿足,其中,命題實(shí)數(shù)滿足

|x-3|≤1 .

(1)若為真,求實(shí)數(shù)的取值范圍;

(2)若的充分不必要條件,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修4—4:坐標(biāo)系與參數(shù)方程

在直角坐標(biāo)系xOy中,設(shè)傾斜角為α的直線lt為參數(shù))與曲線Cθ為參數(shù))相交于不同的兩點(diǎn)A,B

)若α,求線段AB中點(diǎn)M的坐標(biāo);

)若|PA·PB|=|OP,其中P2,),求直線l的斜率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)fx)=axcosx,a≠0

1)若函數(shù)fx)為單調(diào)函數(shù),求a的取值范圍;

2)若x∈[02π],求:當(dāng)a時(shí),函數(shù)fx)僅有一個(gè)零點(diǎn).

查看答案和解析>>

同步練習(xí)冊(cè)答案