【題目】已知函數(shù).

(1)判斷上的單調(diào)性,并說(shuō)明理由;

(2)求的極值;

(3)當(dāng)時(shí),,求實(shí)數(shù)的取值范圍.

【答案】(1)見(jiàn)解析(2)極小值.(3)

【解析】

1)求導(dǎo)數(shù),根據(jù)導(dǎo)函數(shù)符號(hào)確定單調(diào)性,(2)利用導(dǎo)數(shù)研究導(dǎo)函數(shù)單調(diào)性,根據(jù)單調(diào)性確定導(dǎo)函數(shù)符號(hào)變化規(guī)律,即得函數(shù)極值,(3)先根據(jù)特殊值得,再由(1)得,結(jié)合,因此,最后利用(2)證明滿足條件.

解:(1)∵

.

當(dāng)時(shí),,,得,

上單調(diào)遞減.

(2)∵,

,

,則.

上單調(diào)遞增.

∴當(dāng)時(shí),,當(dāng)時(shí),.

上單調(diào)遞增,在上單調(diào)遞減,

有極小值.

(3)令

對(duì)成立.

時(shí),矛盾,不成立.

時(shí),當(dāng)時(shí),

,則,

上單調(diào)遞增,

,∴,即.

由(2)知.

當(dāng)時(shí),,而,等號(hào)不同時(shí)成立,

.

時(shí),若,則,

由(1)知,

.

,

不成立.

綜上,的取值范圍為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,,,是由直線引出的三個(gè)不重合的半平面,其中二面角大小為60°,在二面角內(nèi)繞直線旋轉(zhuǎn),圓內(nèi),且圓,內(nèi)的射影分別為橢圓,.記橢圓,的離心率分別為,,則的取值范圍是(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知圓C過(guò)兩點(diǎn)A0,4),B4,6),且圓心在直線x2y2=0上.

1)求圓C的方程;

2)若直線l過(guò)原點(diǎn)且被圓C截得的弦長(zhǎng)為6,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形為正方形,分別為的中點(diǎn),以為折痕把折起,使點(diǎn)到達(dá)點(diǎn)的位置,且.

(1)證明:平面平面

(2)求與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系xOy中,直線的參數(shù)方程為t為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,已知曲線的極坐標(biāo)方程為,直線與曲線C交于兩點(diǎn).

1)求直線的普通方程和曲線C的直角坐標(biāo)方程;

2)求

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某籃球隊(duì)甲、乙兩名運(yùn)動(dòng)員練習(xí)罰球,每人練習(xí)10組,每組罰球40個(gè).命中個(gè)數(shù)的莖葉圖如圖,則下面結(jié)論中錯(cuò)誤的一個(gè)是(  )

A. 甲的極差是29 B. 甲的中位數(shù)是24

C. 甲罰球命中率比乙高 D. 乙的眾數(shù)是21

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】近年來(lái),隨著互聯(lián)網(wǎng)技術(shù)的快速發(fā)展,共享經(jīng)濟(jì)覆蓋的范圍迅速擴(kuò)張,繼共享單車、共享汽車之后,共享房屋以“民宿”、“農(nóng)家樂(lè)”等形式開(kāi)始在很多平臺(tái)上線.某創(chuàng)業(yè)者計(jì)劃在某景區(qū)附近租賃一套農(nóng)房發(fā)展成特色“農(nóng)家樂(lè)”,為了確定未來(lái)發(fā)展方向,此創(chuàng)業(yè)者對(duì)該景區(qū)附近六家“農(nóng)家樂(lè)”跟蹤調(diào)查了天.得到的統(tǒng)計(jì)數(shù)據(jù)如下表,為收費(fèi)標(biāo)準(zhǔn)(單位:元/日),為入住天數(shù)(單位:),以頻率作為各自的“入住率”,收費(fèi)標(biāo)準(zhǔn)與“入住率”的散點(diǎn)圖如圖

x

50

100

150

200

300

400

t

90

65

45

30

20

20

(1)若從以上六家“農(nóng)家樂(lè)”中隨機(jī)抽取兩家深入調(diào)查,記為“入住率”超過(guò)的農(nóng)家樂(lè)的個(gè)數(shù),求的概率分布列;

(2)令,由散點(diǎn)圖判斷哪個(gè)更合適于此模型(給出判斷即可,不必說(shuō)明理由)?并根據(jù)你的判斷結(jié)果求回歸方程.(結(jié)果保留一位小數(shù))

(3)若一年按天計(jì)算,試估計(jì)收費(fèi)標(biāo)準(zhǔn)為多少時(shí),年銷售額最大?(年銷售額入住率收費(fèi)標(biāo)準(zhǔn)

參考數(shù)據(jù):

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的左右焦點(diǎn)分別為、,左右頂點(diǎn)分別是、,長(zhǎng)軸長(zhǎng)為是以原點(diǎn)為圓心,為半徑的圓的任一條直徑,四邊形的面積最大值為.

(1)求橢圓的方程;

(2)不經(jīng)過(guò)原點(diǎn)的直線與橢圓交于、兩點(diǎn),

①若直線的斜率分別為,,且,求證:直線過(guò)定點(diǎn),并求出該定點(diǎn)的坐標(biāo);

②若直線的斜率是直線、斜率的等比中項(xiàng),求面積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的離心率為,橢圓截直線所得的線段的長(zhǎng)度為.

(Ⅰ)求橢圓的方程;

(Ⅱ)設(shè)直線與橢圓交于兩點(diǎn),點(diǎn)是橢圓上的點(diǎn),是坐標(biāo)原點(diǎn),若,判定四邊形的面積是否為定值?若為定值,求出定值;如果不是,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案